• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, May 31, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Lens Combines Human and Insect Vision to Focus Wide-Angle Views

Bioengineer by Bioengineer
September 20, 2013
in Bioengineering
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A lens invented at The Ohio State University combines the focusing ability of a human eye with the wide-angle view of an insect eye to capture images with depth.

The results could be smartphones that rival the photo quality of digital cameras, and surgical imaging that enables doctors to see inside the human body like never before.

Engineers described the patent-pending lens in the Technical Digest of the 25th IEEE International Conference on Micro Electro Mechanical Systems.

“Our eye can change focus. An insect eye is made of many small optical components that can’t change focus but give a wide view. We can combine the two,” explained Yi Zhao, associate professor of biomedical engineering and ophthalmology at Ohio State. “What we get is a wide-angle lens with depth of field.”

That is to say, the lens shows a wide view, but still offers a sense of human-like depth perception: as close objects come into focus, far away objects look blurry.

Zhao’s prototype lens is made of a flexible transparent polymer filled with a gelatinous fluid similar to fluid inside the human eye. It’s actually a composite of several separate dome-shaped fluid pockets, with small domes sitting atop one larger dome. Each dome is adjustable, so that as fluid is pumped into and out of the lens, different parts of it expand and contract to change the overall shape—and thus, the direction and focus—of the lens.

This shape-changing strategy is somewhat similar to the way muscles in the human eye change the shape of the lens tissue in order to focus. It differs dramatically from the way typical cameras and microscopes focus, which involves moving separate glass lenses back and forth along the line of sight.

The shape-changing lens could potentially offer the same focusing capability as multiple moving lenses in a single stationary lens, which would make for smaller and lighter cameras and microscopes.

In particular, Zhao is interested in using the lens in confocal microscopes, which use a system of moving glass lenses and a laser to scan three-dimensional images of tiny objects.

“We believe that it is possible to make a confocal microscope with no moving parts,” he said.

In tests, Zhao and doctoral student Kang Wei demonstrated that the lens was able to switch its focus among microscopic objects arranged at different distances. In one test, they printed each of the letters in O-H-I-O on top of tiny platforms of different heights, and pointed the lens at them from above. The lens was able to focus on each letter in turn, while the others became more or less blurry depending on how far away they were.

While the prototype worked well, its design wasn’t entirely practical, in that it required an external fluid reservoir, and the fluid had to be pumped in and out by hand. To make the design more appropriate for use in electronics, the engineers created an otherwise identical shape-changing lens from an electrically active polymer, which expands and contracts based on electrical signals. That lens has undergone initial testing, and the engineers have submitted a paper on it to an academic journal.

“We believe that it is possible to make a confocal microscope with no moving parts.”

With further development, the technology could be useful in laparoscopes for medical testing and surgery.

With laparoscopy, doctors insert tiny wide-angle cameras into the patient’s body in order to see as much tissue as they can without cutting the patient open. But such lenses don’t offer a sense of depth: they show all objects—both near and far—in focus at all times. This poses a problem for doctors; if they mistake a close object for a far away one, they could accidentally graze healthy tissue with the scope or surgical instruments.

“With our lens, doctors could get the wide-angle view they need, and still be able to judge the distance between the lens and tissue. They could place instruments with more confidence, and remove a tumor more easily, for example,” Zhao said.

The lens could ultimately find a home in smartphones. Because phone cameras don’t have moving parts, they use a “fixed focus” lens, which treats a scene the same way a wide-angle lens does: all objects are in focus, so depth is missing. Phone cameras can’t truly zoom in on objects, either. They just crop an image and enlarge it, which greatly reduces quality. With a shape-changing lens, a phone could potentially take pictures with the same depth and zoom as a more expensive digital camera.

At 5 millimeters across, however, the lens is a little bigger than a typical smartphone lens, so Zhao and Wei plan to shrink the design.

The university’s Technology Commercialization and Knowledge Transfer Office will license the technology to industry.

This research was supported by graduate fellowship from the Howard Hughes Medical Institute and a Pelotonia Postdoctoral Fellowship from Ohio State’s Comprehensive Cancer Center.

Story Source:

The above story is reprinted from materials provided by The Ohio State University, Pam Frost Gorder.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

February 4, 2023
blank

Robo-fish

September 19, 2016

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    39 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Groundbreaking study uncovers first evidence of long-term directionality in the origination of human mutation, fundamentally challenging Neo-Darwinism

    115 shares
    Share 46 Tweet 29
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Biomicrofluidics selects groundbreaking platform to manipulate biospecimens for 2022 Best Paper Award

Experts assess state of the art in the treatment and management of cerebral palsy

Paleontologists discover elephant graveyard in North Florida

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In