• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Just like flipping a switch — in only half a picosecond

Bioengineer by Bioengineer
January 16, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

MU researchers discover molecules ‘spin flip’ from magnetic to non-magnetic forms dynamically

Solar cells, quantum computing and photodynamic cancer therapy. These all involve molecules switching between magnetic and nonmagnetic forms. Previously this process, called a “spin flip,” was thought to occur slowly in most cases. Now, researchers at the University of Missouri have discovered spin flips happen in one half of one trillionth of a second, or half a picosecond in the course of a chemical reaction. To understand how fast it is — watches count in seconds, sporting games are timed in 10ths of a second, and light travels just under 12 inches in one-billionth of a second. Spin flips are faster.

“A typical molecule can have two modes, either magnetic or non-magnetic,” said Arthur Suits, a professor of chemistry in the MU Department of Chemistry. “They can switch from one mode to another if they are ‘excited’ such as by absorbing light. Most molecules begin as non-magnetic, but if you excite it with light, it can switch and become a magnetic molecule, or vice versa.”

It is well known that the spin flip for molecules excited by light is usually inefficient so it happens very slowly. Spin flips in chemical reactions are possible but few examples are known. Suits and his team at the University of Missouri tested whether spin flips could occur during a reaction by conducting a scattering experiment where beams of molecules collided into one another, creating a chemical reaction inside a vacuum chamber. They were surprised by what they discovered and partnered with Spiridoula Matsika, a professor of computational theory in the Department of Chemistry at Temple University to understand why the spin flip occurs in half of a trillionth of a second, much faster than previously thought.

“We discovered this transition from magnetic to non-magnetic happens after the chemical reaction, as the molecules are coming apart and products are forming,” Suits said. “With this theory, we can understand and explain why this is happening very efficiently in the course of this chemical reaction.”

The researchers say understanding this behavior is fundamental for many areas in science such as making more efficient solar cells, quantum computing and photodynamic cancer therapy.

###

The study, “Intersystem crossing in the exit channel,” was published in Nature Chemistry. Other collaborators on this study include Hongwei Li, a postdoctoral fellow at MU and Alexander Kamasah. Kamasah, a doctoral student at MU during the study, is now an assistant professor of chemistry at Rose-Hulman Institute of Technology in Terre Haute, Indiana. Funding for this study was provided by a U.S. Department of Energy contract (DE-SC0017130) along with an Army Research Office grant (W911Nf-17-1-0099) and a National Science Foundation grant (CHE-1800171). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

Media Contact
Eric Stann
[email protected]
573-882-3346

Related Journal Article

https://munews.missouri.edu/news-releases/2019/0116-just-like-flipping-a-switch-in-only-half-a-picosecond/
http://dx.doi.org/10.1038/s41557-018-0186-5

Tags: BiotechnologycancerChemistry/Physics/Materials SciencesComputer ScienceElectromagneticsMathematics/StatisticsMolecular PhysicsNanotechnology/MicromachinesResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Lactylation Insights Reveal Fat Deposit Regulation in Pigs

Lactylation Insights Reveal Fat Deposit Regulation in Pigs

December 18, 2025
blank

Lanthipeptides Linked to Genetic Exchange in Prokaryotes

December 18, 2025

Comparing LEGU-1 and LGMN Interactions with Proton Pump Inhibitors

December 18, 2025

Two-Decade Shift in Parasite Communities of Paralonchurus Brasiliensis

December 18, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Peptidyl-tRNA Hydrolase 2 Suppresses Peripartum Heart Failure

Large Language Models in Obesity: A Review

Evaluating Self-Assessment Tools for Disaster Nursing Competencies

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.