• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Injections or light irradiation?

Bioengineer by Bioengineer
March 15, 2021
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: POSTECH

A new concept of on-demand drug delivery system has emerged in which the drugs are automatically released from in vivo medical devices simply by shining light on the skin.

A research team led by Professor Sei Kwang Hahn of the Department of Materials Science and Engineering and Professor Kilwon Cho of the Department of Chemical Engineering at POSTECH have together developed an on-demand drug delivery system (DDS) using an organic photovoltaic cell coated with upconversion nanoparticles. This newly developed DDS allows nanoparticles to convert skin-penetrating near-infrared (NIR) light into visible light so that drug release can be controlled in medical devices installed in the body. These research findings were published in Nano Energy on March 1, 2021.

For patients who need periodic drug injections as in the case of diabetes, DDSs that automatically administer drugs in lieu of repetitive shots are being researched and developed. However, its size and shape have been restricted due to limitations in power supply for operating such a device.

The research team found the answer in solar power. Upconversion nanoparticles were used for the photovoltaic device to induce photovoltaic power generation with NIR light that can penetrate the skin. An organic photovoltaic cell coated with a core-shell structured upconversion nanoparticles was designed to operate a drug delivery system made of a mechanical and electronic system by generating an electric current upon irradiation of NIR light. When electricity is applied in this manner, the thin gold film sealing the drug reservoir melts and the drug is released.

“The combination of a flexible photovoltaic cell and a drug delivery system enables on-demand drug release using light,” explained Professor Sei Kwang Hahn. “The drug delivery system is activated using near-infrared light that is harmless to the human body and is highly skin-penetrating.”

He added, “Since this enables nimble control of drug release of medical devices inserted into the body by using near-infrared light, it is highly anticipated to contribute to the development of phototherapy technology using implantable medical devices.”

###

This research was financially supported by the Global Frontier Program, the Engineering Research Center Program, and the Mid-career Researcher Program of the Korean Ministry of Science and ICT.

Media Contact
Jinyoung Huh
[email protected]

Original Source

http://postech.ac.kr/eng/injections-or-light-irradiation/?pageds=1&k=&c=

Related Journal Article

http://dx.doi.org/10.1016/j.nanoen.2020.105650

Tags: BiochemistryBiologyBiomechanics/BiophysicsBiotechnologyChemistry/Physics/Materials SciencesMedicine/HealthPharmaceutical ChemistryPharmaceutical Science
Share12Tweet8Share2ShareShareShare2

Related Posts

University of Minnesota Medical School Secures $3.3 Million NIH Grant for Groundbreaking 5-Year Study on Infants Born with CMV

University of Minnesota Medical School Secures $3.3 Million NIH Grant for Groundbreaking 5-Year Study on Infants Born with CMV

September 9, 2025
Gemini South Uncovers Elusive Cloud-Forming Chemical on Ancient Brown Dwarf

Gemini South Uncovers Elusive Cloud-Forming Chemical on Ancient Brown Dwarf

September 9, 2025

Breakthrough Research Unveils Promising Route to Enhanced Durability in Flexible Electronics

September 9, 2025

NCCN Policy Summit Examines the Potential of Artificial Intelligence to Revolutionize Cancer Care Safely and Equitably

September 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • Physicists Develop Visible Time Crystal for the First Time

    50 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

University of Minnesota Medical School Secures $3.3 Million NIH Grant for Groundbreaking 5-Year Study on Infants Born with CMV

Gemini South Uncovers Elusive Cloud-Forming Chemical on Ancient Brown Dwarf

Breakthrough Research Unveils Promising Route to Enhanced Durability in Flexible Electronics

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.