• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Improving the body's ability to fight cancer and intruders

Bioengineer by Bioengineer
February 7, 2019
in Cancer
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New methods for understanding the immune system and how to boost it

IMAGE

Credit: National Institutes of Health


The human body’s immune system is like a vast team of special agents. Certain cells called T cells each individually specialize in recognizing a particular intruder, such as the influenza virus or salmonella. Determining a given T cell’s target is a critical step in designing personalized treatments for cancers and developing vaccines. Now, a team of Caltech scientists has developed two new methods for rapidly determining T cell targets.

The work was done in the laboratory of David Baltimore, Robert Andrews Millikan Professor of Biology and president emeritus. Two papers describing the research appear in the January 28 issue of the journal Nature Methods.

A cell that is infected with a pathogen–for example, an influenza virus–will display bits of the invader’s genetic material on the cell surface, like waving a red flag to indicate what is going on inside the cell. These “flags,” called antigens, are presented on proteins on the cell surface, called MHCs (major histocompatibility complexes). Each T cell is specialized to recognize a different antigen. When a T cell finds a cell displaying its target antigen on an MHC complex, the T cell will bind to it and destroy it.

There are from 1 million to 5 million unique T cells on average in a human targeting countless different pathogens. Though scientists can characterize the function and molecular makeup of a T cell’s receptor, it is difficult to determine what target a given receptor specifically recognizes. In fact, fewer than 1,000 antigen-T cell pairs are known.

Now, led by postdoctoral scholars Alok Joglekar and Guideng Li, researchers in the Baltimore laboratory have developed two new methods for determining the targets of T cells.

In the first method, the scientists attached proteins, called signaling domains, onto MHCs. The new complex, called a signaling and antigen-presenting bifunctional receptor, or SABR, is designed to send a signal into the cell to make it glow bright green once it has been bound by a corresponding T cell. A researcher could then take thousands of different antigens, each presented by a SABR, and combine them with a particular T cell. Only the cells presenting the correct antigen should glow green, allowing the researchers to fish out the correct antigen–the T cell’s target.

The second method takes advantage of a natural phenomenon called trogocytosis. This occurs when a T cell and its target cell bind together and exchange proteins that are bound to their surfaces. Although researchers have not yet determined why trogocytosis occurs, the Baltimore laboratory decided to use the phenomenon to indicate T-cell targets. To do this, the researchers made a pool of antigen-presenting cells, each displaying a unique antigen, and then exposed them to T cells with a receptor of interest. Only the cells presenting the correct antigen acquired markers from the T cell via trogocytosis. Afterward, the antigen corresponding to the T cell could then be identified by the marker on its surface.

Understanding antigen-T cell pairs is crucial for developing cancer vaccines and also for designing personalized treatments for cancers, as antigens can also be signatures of cancer. No two cancers are the same, and because cancer cells grow so rapidly, they also mutate rapidly. Ideally, then, a scientist could take a sample of a person’s tumors, isolate T cells from them, and use one of these methods to discover the antigens that are targeted by the T cells. Once these targets are identified, the T cells can be used to augment the patient’s own immune system in various ways to help it better fight the person’s cancer.

###

A paper describing the SABR method is titled “T cell antigen discovery via Signaling and Antigen presenting Bifunctional Receptors.” Postdoctoral scholar Alok Joglekar is the study’s first author. In addition to Joglekar and Baltimore, co-authors are Caltech research technicians Michael Leonard and Margaret Swift; former Caltech research technician John Jeppson; postdoctoral scholar Guideng Li; former Caltech undergraduate and current research technician Stephanie Wong (BS ’16); former Caltech postdoctoral scholar Songming Peng now of PACT Pharma; Jesse Zaretsky of UCLA; James Heath, a former Caltech professor now at the Institute for Systems Biology in Seattle; Antoni Ribas of UCLA; and former postdoctoral scholar Michael Bethune.

A paper describing the trogocytosis method is titled “T cell antigen discovery via trogocytosis.” Guideng Li and Michael Bethune are the study’s first authors. In addition to Li, Bethune, and Baltimore, co-authors are Stephanie Wong; Alok Joglekar; Michael Leonard; undergraduate Jessica Wang; former graduate student Jocelyn Kim (PhD ’16), now of UCLA; Donghui Cheng of UCLA; Songming Peng; Jesse Zaretsky; Caltech graduate students Yapeng Su and Yicheng Luo; James Heath; Antoni Ribas; and Owen Witte of UCLA. Baltimore, Ribas, Heath, and Witte are also members of the Parker Institute for Cancer Immunotherapy at UCLA and Caltech.

Media Contact
Lori Dajose
[email protected]
626-658-0109

Original Source

http://www.caltech.edu/news/how-body-fights-cancer-and-intruders-85138

Related Journal Article

http://dx.doi.org/10.1038/s41592-018-0304-8

Tags: BiologyBiomedical/Environmental/Chemical EngineeringBiotechnologycancerGenesImmunology/Allergies/AsthmaMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Moffitt Study Reveals Novel Mechanism Behind Immunotherapy Resistance

Moffitt Study Reveals Novel Mechanism Behind Immunotherapy Resistance

August 21, 2025
New Fluorescent Imaging Method Enables Rapid and Safe Detection of Basal Cell Carcinoma

New Fluorescent Imaging Method Enables Rapid and Safe Detection of Basal Cell Carcinoma

August 21, 2025

Boston University Secures Funding to Enhance Autistic Adults’ Participation in Colorectal Health Research

August 21, 2025

Mount Sinai Researchers Develop First Targeted Therapy for Rare T-Cell Lymphoma Following CAR T Treatment

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Disaster Response Strategies Through the EBD Dataset

Simon Family Supports Stevens INI in Advancing Global Alzheimer’s Research

Moffitt Study Reveals Novel Mechanism Behind Immunotherapy Resistance

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.