• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Impact of arbuscular mycorrhizal species on heterodera glycines

Bioengineer by Bioengineer
October 26, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: M. L. Pawlowski and G. L. Hartman

Introduced to the United States over 60 years ago, soybean cyst nematode (SCN) has spread broadly throughout the Midwest and eastern parts of the country. After penetrating the root tissue, SCN take nutrients away from the soybean plant and reduce plant growth and yield. These nematodes are the leading cause of soybean losses in the United States–in 2014, SCN resulted in the loss of 3.5 million tons of soybean.

While there are management strategies in place, many of them have become less effective in curtailing SCN populations. University of Illinois and USDA plant pathologists M.L. Pawlowski and G.L. Hartman, respectively, have been involved in an on-going effort to increase soybean productivity by reducing soybean diseases and pests. Their latest research found that arbuscular mycorrhizal fungi in a potential tool in SCN management.

Arbuscular mycorrhizal fungi (AMF) form symbiotic relationships with the roots of most plants, including soybean. Previous research has shown that these fungi can reduce the severity of plant disease caused by pathogens and pests including SCN. Pawlowski and Hartman set out to understand how AMF suppress SCN populations.

In one experiment they found that several different AMF species from different families reduced the number of cysts on soybean roots by 59 to 80 percent. They also found that one AMF species reduced counts of SCN by 60 percent and was able to suppress egg hatching by as much as 30 percent.

“We were surprised to find that AMF was so good at repressing SCN,” said Hartman. “This opens up new avenues of research, which is needed to determine the efficacy of using AMF in field conditions, with a goal of providing another management tool to reduce the impact of SCN on soybean production.”

Hartman also suggests that industries interested in biological control using arbuscular mycorrhizal fungi might consider commercializing the strain (F. mosseae) that was effective in reducing SCN. For more information, read “Impact of Arbuscular Mycorrhizal Species on Heterodera glycines” in the September issue of Plant Disease.

###

Media Contact
Ashley Bergman Carlin
[email protected]

Related Journal Article

http://dx.doi.org/10.1094/PDIS-01-20-0102-RE

Tags: Agricultural Production/EconomicsAgricultureBiologyFertilizers/Pest ManagementFood/Food ScienceMycologyParasitologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating SNP Arrays vs Imputed Data in Horses

Evaluating SNP Arrays vs Imputed Data in Horses

November 30, 2025
Ammonium and Warming Shape Adult Frogs’ Development

Ammonium and Warming Shape Adult Frogs’ Development

November 30, 2025

RNA-seq and ATAC-seq Unveil Cattle Gene Expression

November 30, 2025

HBA Gene Variations Enhance Tibetan Sheep’s High-Altitude Survival

November 30, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    105 shares
    Share 42 Tweet 26
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Eco-Friendly Polyurethane Foams from Waste Cooking Oil

Hemoglobin Glycation Index as Diabetes Predictor: Study

[6]-Shogaol Inhibits SARS-CoV-2 3CLpro Activity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.