• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Human stem cells enable model to test drug impact on brain’s blood barrier

Bioengineer by Bioengineer
June 30, 2021
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Saskia Ludwig

Using an experimental model to simulate the blood-brain barrier, scientists in Sweden reported in unprecedented detail how antioxidants protect the brain from inflammation caused by neurodegenerative diseases such as Alzheimer’s and Parkinson’s.

The study, conducted as a proof of concept by brain model developers at KTH Royal Institute of Technology in Stockholm, showed in minute-by-minute detail how the blood-brain barrier reacts to high levels of inflammation after the administration of a next-generation derivative of the widely-used anti-inflammatory drug, NAC (N-acetylcysteine).

The testing of NACA (N-Acetylcysteine Amide) for the first time with human stem cell-derived cells showed that the breakdown of the barrier under high loads of inflammation is “actually more complex than we thought,” says KTH researcher Thomas Winkler.

The findings were published in the journal, Small.

“This was the first test of this NACA compound with human stem cells,” Winkler says. “The results show that we can use this to test other derivatives of the NAC compound–as well as different antioxidants–and see if we find anything that has even higher neural protection.”

Co-author Isabelle Matthiesen, a PhD student at KTH, says that the research is not meant to provide definitive proof of how anti-inflammatories affect the brain; yet the results provide encouraging evidence that the model could replace testing drugs on animals before clinical trials.

“We successfully based the barrier on human stem cell-derived cells so this model is relevant to drugs being testing for humans, while other models are made with animal cells or are too simple to monitor closely,” Matthiesen says.

The researchers’ “brain-on-chip” model is actually a two layered set-up where small channels carry simulated blood and inflammation agents, as well as anti-inflammatory drugs, through compartments simulating the perivascular space within the brain, and the external vascular system.

Just as in a real brain, these two areas are separated by a blood brain barrier–a membrane of cells that line the blood vessels of the brain.

This layer is held together by tight junctions that prevent small molecules from diffusing through the gaps between the cells. The barrier serves as a filter to prevent harmful substances from passing into the brain tissue from the bloodstream.

In the model, the barrier is represented by a membrane of cells derived from the stem cells of a single patient, knitted together with proteins.

Cell activity is monitored by electronic sensors which are able to take measurements every minute, as the barrier is exposed to stress similar to that which neurodegenerative diseases cause.

Winkler says that the minute-by-minute detail is important because many cellular processes happen quickly.

“As an example, when you first administer a drug, it causes a huge change in cells, then levels out,” Winkler says. “In the typical methods of testing drugs, you wouldn’t see those rapid changes.

“We can now see that the breakdown of the blood brain barrier happens fast under stress and we could see how that could be prevented with the anti-oxidant,” he says.

###

Media Contact
Thomas Winkler
[email protected]

Original Source

https://www.kth.se/en/aktuellt/nyheter/human-stem-cells-enable-model-to-test-drug-impact-on-brain-s-blood-barrier-1.1088594

Related Journal Article

http://dx.doi.org/10.1002/smll.202101785

Tags: AlzheimerBiotechnologyMedicine/Healthneurobiology
Share13Tweet8Share2ShareShareShare2

Related Posts

Seismic Analysis of Masonry Facades via Imaging

Seismic Analysis of Masonry Facades via Imaging

August 16, 2025
Pediatric Pharmacogenomics: Preferences Revealed by Choice Study

Pediatric Pharmacogenomics: Preferences Revealed by Choice Study

August 16, 2025

Genkwanin Glycosides Boost Glucose Uptake in Fat

August 16, 2025

Real-Time Water Monitoring in Aqueducts via Acoustic Sensing

August 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Seismic Analysis of Masonry Facades via Imaging

Pediatric Pharmacogenomics: Preferences Revealed by Choice Study

Genkwanin Glycosides Boost Glucose Uptake in Fat

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.