• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, May 28, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Human-on-a-chip technology

Bioengineer by Bioengineer
October 1, 2013
in Bioengineering
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Army scientists at the Edgewood Chemical Biological Center (ECBC) and academic collaborators are conducting research on organoids (small swatches of human tissue) on microchips.

Crystal Randall, an Army microbiologist on ECBC’s in vitro research team, conducts laboratory research. (U.S. Army photo by Conrad Johnson)
Crystal Randall, an Army microbiologist on ECBC’s in vitro research team, conducts laboratory research. (U.S. Army photo by Conrad Johnson)

The “human on a chip” research focuses on in vitro human organ constructs (for the heart, liver, lung and the circulatory system) in communication with each other. The goal is to assess effectiveness and toxicity of drugs in a way that is relevant to humans and their ability to process these drugs.

“The screening models will be used to assess the efficacy and safety of medical mitigation procedures and countermeasures for the soldier and the nation as a whole,” said Dr. Harry Salem, ECBC’s chief scientist for Life Sciences.

Each organ-on-a-chip is about the size of a thumb drive and is an “organoid” (a structure that resembles an organ in appearance or function), designed to mimic the properties of an actual human organ.

The organoids are created by induced pluripotent stem cells made from adult skin cells. They comprise multiple layers of cells growing on a membrane, connected to each other by microfluidics (tiny micro channels) that copy the function of blood vessels.

Their primary purpose is to take the place of animal research. According to Salem, compounds quite often behave differently in people than they do in animals. For that reason, human-estimate studies are used, but do not always accurately reflect the human response. Due to the species-specific differences by which compounds are metabolized, a drug tested on a laboratory rat doesn’t always translate well to a human.

In some cases, no animal testing can mimic the human response. Asthma, for example, is a uniquely human disease. Since human-on-a-chip is made from human cells, it is the next best thing. Human tissue reacts like human tissue.

New predictive models of toxicity

The researchers anticipate that new predictive models of toxicity will result from the more accurate human-on-a-chip testing, saving time and money. Pharmaceuticals tested on animals fail to work on humans 90 percent of the time. This technology will result in fewer test failures. Scientists will be able to narrow their research efforts by identifying which therapeutics will be effective or fail early on in the testing process, the researchers say.

The center houses the only laboratories in the United States that the Chemical Weapons Convention permits to produce chemical warfare agent for testing purposes. ECBC will test the human-on-a-chip against chemical warfare agents to learn more about how the body will respond to agent exposure and explore various treatment options for exposures.

“The human-on-a-chip promises to accelerate the pace of research and consequently scientific breakthroughs,” Dr. Russell Dorsey, a research microbiologist and one of the members performing the in vitro testing at ECBC, said. “For the military, our human-on-a-chip research will save actual warfighters’ lives.”

The center will be collaborating with the U.S. Army Medical Research Institute of Chemical Defense, Wake Forest, Harvard, and the University of Michigan on the chip design.

The five-year research project is funded by the Defense Threat Reduction Agency.

Story Source:

The above story is based on materials provided by U.S. Army via kurzweilai

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

February 4, 2023
blank

Robo-fish

September 19, 2016

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • the University of Haifa

    Groundbreaking study uncovers first evidence of long-term directionality in the origination of human mutation, fundamentally challenging Neo-Darwinism

    115 shares
    Share 46 Tweet 29
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    34 shares
    Share 14 Tweet 9
  • The case for engineering our food

    73 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Study finds distinct patterns of pre-existing brain health characteristics in stroke patients

New moms and dads left unprepared for parenthood by government health ‘failures’, report warns

Absolute vs. relative efficiency: How efficient are blue LEDs, actually?

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In