• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

High- performance 3D printer for titanium structures and In situ synthesis of alloys

Bioengineer by Bioengineer
February 26, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

3D printer for high-speed printing of titanium structures

IMAGE

Credit: Peter the Great St.Petersburg Polytechnic University

Researchers from Peter the Great St.Petersburg Polytechnic University (SPbPU) developed and manufactured a unique 3D printer named the “Prism”. The 3D-printer was manufactured and firstly demonstrated on January 29, 2021. The main purpose of the developed printer is to print structures made of titanium, an expensive material, but essential for various industries due to its strength properties and low specific weight. The printing system is located in a chamber with an inert atmosphere. This printer may also be used to print products made of steel, aluminum, magnesium, nickel alloys. The researchers used the wire as a raw material to ensures the high productivity of the process. The layer-by-layer deposition is performed in the 3D printer, in which the wire is melted due to the burning of an electric arc. In developed printer two wires can be fed simultaneously to increase productivity and to synthesize new alloy or gradient structures from two dissimilar wires.

Concerning the numbers, German and Spanish companies are limited in wire feed rates at the level of 6 m / min, the printer developed at the Polytech University prints at the feed rate of 12 m / min.

“Our printer “Prism” has higher performance characteristics compared to the analogs. Due to the use of chamber with an inert atmosphere, we can print any metal, even very active like titanium. Also, the technology of printing itself were improved by the scientific group of SPbPU by developing a double wire feeding system and special shape of a current and voltage waveforms that used for electric arc burning.

In fact, it is allowed to use two dissimilar materials during 3D-printing. Using two different wires helps to create innovative materials with gradient transitions in the structure or, for example, intermetallic compounds that are rarely used now due to the complexity of product manufacturing. Thus we can print a 4 kg titanium product within one hour. Our printer, due to the use of robotic arm, can be adapted for the needs of a specific enterprise, in particular, to increase or, on the contrary, to reduce its printing area,” notes Oleg Panchenko, Head of the Laboratory of Light Materials and Structures SPbPU.

Scientists have already obtained several patents for the solutions used in the printer.

###

Media Contact
Raisa Bestugina
[email protected]

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsElectromagneticsIndustrial Engineering/ChemistryMaterialsNanotechnology/MicromachinesResearch/DevelopmentRobotry/Artificial IntelligenceSoftware Engineering
Share12Tweet8Share2ShareShareShare2

Related Posts

Fluorescent RNA Switches Detect Point Mutations Rapidly

Fluorescent RNA Switches Detect Point Mutations Rapidly

November 21, 2025
Engineering Ultra-Stable Proteins via Hydrogen Bonding

Engineering Ultra-Stable Proteins via Hydrogen Bonding

November 19, 2025

Designing DNA for Controlled Charge Transport

November 18, 2025

Chemoselective Electrolysis Drives Precise Arene Hydroalkylation

November 17, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    92 shares
    Share 37 Tweet 23
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    212 shares
    Share 85 Tweet 53

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Fluid Dynamics in Type B Aortic Dissection

NSUN7 Modulates Glioblastoma Stemness via m5C CircNTRK2

Exploring Sulforaphane’s Impact on Autism Spectrum Disorder

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.