• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, August 8, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Genome of Elastomeric Materials Creates Novel Materials

Bioengineer by Bioengineer
September 19, 2013
in Bioengineering
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A wide range of biologically inspired materials may now be possible by combining protein studies, materials science and RNA sequencing, according to an international team of researchers.

“Biological methods of synthesizing materials are not new,” said Melik C. Demirel, professor of engineering science and mechanics, Penn State. “What is new is the application of these principles to produce unique materials.”

The researchers looked at proteins because they are the building blocks of biological materials and also often control sequencing, growth and self-assembly. RNA produced from the DNA in the cells is the template for biological proteins. Materials science practices allow researchers to characterize all aspects of how a material functions. Combining these three approaches allows rapid characterization of natural materials and the translation of their molecular designs into useable, unique materials.

“One problem with finding suitable biomimetic materials is that most of the genomes of model organisms have not yet been sequenced,” said Demirel who is also a member of the Materials Research Institute and Huck Institutes of Life Sciences, Penn State. “Also, the proteins that characterize these materials are notoriously difficult to solubilize and characterize.”

The team, lead by Ali Miserez, assistant professor, School of Materials Science and Engineering, Nanyang Technological University, Singapore, looked at mollusk-derived tissues that had a wide range of high-performance properties including self-healing elastomeric membranes and protein-based polymers. They combined a variety of approaches including protein sequencing, amino acid composition and a complete RNA reference database for mass spectrometry analysis. They present their results in a recent issue of Nature Biotechnology.

The researchers looked at three model systems. The protein containing egg case membranes of a tropical marine snail are intriguing because they have unusual shock-absorbing qualities and elasticity. Investigation using the variety of methods showed this material has a coiled structure with crosslinking that absorbs energy. This information can be applied to biomimetic engineering of robust yet permeable coiled, protein-based membranes with precisely tailored mechanical properties.

The array of techniques applied toanalysis of a mussel foot showed that a species-to-species variation exists in mussel, including unusual variation in the protein. These variations suggest that protein engineering could produce a range of self-healing properties.

The final model used jumbo squid sucker ring teeth (SRT), grappling-hook-like structures used for predatory attacks. Analysis of the squid teeth showed nanotubular structure and strong polymers. While there was some similarity to silk and oyster shell matrix proteins, the protein was novel and the researchers named it Suckerin-39. Further analysis showed that Suckerin-39’s structure allowed it to be reprocessed into a variety of shapes.

“While some biological materials have interesting properties, they cannot be reshaped or remolded because they do not soften upon heating,” said Demirel. “The SRT is an elastomer, which is moldable, it is a thermoplastic and can be reshaped.”

The materials properties of SRT do not change after heating and reshaping.
“We now know that nature can do all kinds of things including nanotubes, cross-linked structures and shock-absorbing coils,” said Demirel. “Now that we know the secrets, we need to find ways to mimic the structures and do it inexpensively.”

This may mean having bacteria produce the required proteins or some other biomimetic approach.
“Integrating these eco-friendly materials into devices for wetting, friction and transport is relatively straightforward and will constitute an important part of our future research,” said Demirel.
Also working on this project from Penn State was Abdon Pena-Francesch,graduate student in engineering science and mechanics.

Those at other institutions include Paul A. Guerette; Shawn Hoon; Sharouz Amini; Gavin Tay; and Dawei Ding, all of Nanyang Technological University, Singapore. Yiqi Seow; Fong Tian Wong, Vincent H.B. Ho; Kong Kiat Whye, all of Biomedical Sciences Institute, Singapore. Manfred Raida, Experimental Therapeutics Centre, Singapore; Admir Masic, Max-Planck Institute of Colloids and Interfaces, Potsdam, Germany.
The Office of Naval Research and NIH partially funded this research.

Story Source:

The above story is based on materials provided by Penn State, A’ndrea Elyse Messer.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Robo-fish

September 19, 2016
blank

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016

Sixteen MIT grad students named Siebel Scholars for 2017

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    66 shares
    Share 26 Tweet 17
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10
  • Skin: An additional tool for the versatile elephant trunk

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Weather/StormsZoology/Veterinary ScienceViolence/CriminalsWeaponryVaccinesUrogenital SystemUniversity of WashingtonVirusVaccineUrbanizationVirologyVehicles

Recent Posts

  • AI pilot can navigate crowded airspace
  • Artificial intelligence tools predict DNA’s regulatory role and 3D structure
  • In simulation of how water freezes, artificial intelligence breaks the ice
  • Ridge-to-reef ecosystem census reveals hidden reservoir for microbiomes
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In