• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, September 27, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Flu fighter: Nanoparticle-based vaccine effective in preclinical trials

Bioengineer by Bioengineer
May 24, 2021
in Immunology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The vaccine, made of disease-fighting proteins, could boost efficacy, accelerate production of seasonal flu vaccines

IMAGE

Credit: University at Buffalo.

BUFFALO, N.Y. — An experimental flu vaccine consisting of billions of tiny spherical sacs that carry infection-fighting proteins throughout the body has proven effective in preclinical studies.

Described in a study published May 24 by the Proceedings of the National Academy of Sciences, the vaccine has the potential to:

  • Improve the effectiveness of seasonal flu vaccines, which typically work 40-60% of the time, according to the U.S. Centers for Disease Control and Prevention.
  • Take less time to produce large quantities because, unlike most seasonal flu vaccines, it is not created in embryonated chicken eggs.
  • Use smaller doses, thereby increasing vaccine supplies, which can be critical given the unpredictable nature of influenza.

“The results are very encouraging”, says the study’s senior author, Jonathan Lovell, PhD, associate professor of biomedical engineering at the University at Buffalo.

“Typically, flu vaccines contain either deactivated microbes that cause influenza, or they are based on weakened forms of the disease. The vaccine we’re developing is a recombinant protein nanoparticle vaccine that stimulates a strong immune response,” Lovell says.

Key to the vaccine’s success is a liposome Lovell and colleagues created called cobalt-porphyrin-phospholipid, or CoPoP.

These tiny spherical sacs, which are small enough to be considered nanoparticles, form the backbone of what is known pharmaceutical parlance as a vaccine platform, which is any underlying technology used to develop multiple vaccines.

(While not part of this study, the platform is being utilized in clinical trials in South Korea as a COVID-19 vaccine candidate. This is a partnership between UB spinoff company POP Biotechnologies, co-founded by Lovell, and South Korean biotech company EuBiologics. POP Biotechnologies is also working with Scripps Research to study the platform in a possible HIV vaccine.)

Alone, these liposomes do not fight disease. But they possess a special talent. They spontaneously convert virus proteins that prompt immune responses into a more potent nanoparticle format.

“This conversion is advantageous because the dissolved proteins attach to the surface of the liposomes, where the proteins enhance the immune system’s response to disease,” says senior author Matthew Miller, PhD, associate professor of biochemistry and biomedical sciences at McMaster University

In the study, the researchers introduced a group of proteins known as hemagglutinin to the CoPop liposomes. One particular hemagglutinin, known as trimeric H3 HA, triggered a strong immune response in mice.

“The nanoparticles carry the trimeric H3 HA to the body’s immune cells, and they provoke those immune cells to respond more vigorously to the flu,” says lead author Zachary Sia, a PhD candidate in Lovell’s lab.

In experiments involving flu virus strain H3N2, blood serum from vaccinated mice was injected into non-vaccinated mice. The injection provided protection against H3N2. In experiments with ferrets involving a more modern H3N2 strain, the vaccine reduced the amount of virus in the animals’ upper respiratory system.

Even with doses as low as 2 nanograms, the vaccine provided a similar level of protection that vaccines with doses typically measured in micrograms, or roughly 1,000 times more.

“The dose-sparing effect is important because it means we could create many more doses using less materials” says senior co-author Bruce Davidson, PhD, research associate professor of anesthesiology in the Jacobs School of Medicine and Biomedical Sciences at UB. “Simply put, CoPoP likely will provide greater immune protection with less hemagglutinin than current vaccines.”

The vaccine platform is also versatile.

Researchers were able to simultaneously bind 10 recombinant proteins representing distinct influenza virus strains to generate a highly multivalent nanoparticle. A 5 nanogram dose in mice offered protection against the H5N1 flu strain, more commonly known as bird flu, a virus that epidemiologists say has the potential to trigger a pandemic.

###

Funding to support the study came from the U.S. National Institutes of Health, from a Canadian Institutes of Health Research (CIHR) New Investigator Award from the Government of Ontario, a Physicians Services Inc. Research Trainee Fellowship, and a CIHR Canada Graduate Scholarship.

Additional support came from the Veterans Affairs Western New York Healthcare System, the Facility for Electron Microscopy Research at McGill University, and the Canadian Foundation for Innovation and the Government of Quebec.

Lovell and co-author Wei-Chiao Huang hold interest in POP Biotechnologies.

Media Contact
Cory Nealon
[email protected]

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyCell BiologyDeveloping CountriesDisease in the Developing WorldInfectious/Emerging DiseasesMedicine/HealthPharmaceutical SciencesVaccinesVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

A novel role discovered for vagus nerve

Patients who quit smoking after percutaneous coronary intervention do as well as non-smokers – unless they had smoked heavily

THE LANCET: Gender inequalities worsen women’s access to cancer prevention, detection and care; experts call for transformative feminist approach

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In