• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, July 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Exosome treatment improves recovery from heart attacks in a preclinical study

Bioengineer by Bioengineer
September 29, 2020
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The exosomes were secreted by cardiac cells derived from human induced pluripotent stem cells. These non-living exosomes may be an easier form of regenerative treatment than living cells.

IMAGE

Credit: UAB

BIRMINGHAM, Ala. – Science has long known that recovery from experimental heart attacks is improved by injection of a mixture of heart muscle cells, endothelial cells and smooth muscle cells, yet results have been limited by poor engraftment and retention, and researchers worry about potential tumorigenesis and heart arrhythmia.

Now research in pigs shows that using the exosomes naturally produced from that mixture of heart muscle cells, endothelial cells and smooth muscle cells — which were all derived from human induced pluripotent stem cells — yields regenerative benefits equivalent to the injected human induced pluripotent stem cell-cardiac cells, or hiPSC-CCs.

Exosomes are membrane-bound extracellular vesicles that contain biologically active proteins, RNAs and microRNAs. Exosomes are well known to participate in cell-to-cell communication, and they are actively studied as potential clinical therapies.

“The hiPSC-CC exosomes are acellular and, consequently, may enable physicians to exploit the cardioprotective and reparative properties of hiPSC-derived cells while avoiding the complexities associated with tumorigenic risks, cell storage, transportation and immune rejection,” said Ling Gao, Ph.D., and Jianyi “Jay” Zhang, M.D., Ph.D., University of Alabama at Birmingham corresponding authors of the study, published in Science Translational Medicine. “Thus, exosomes secreted by hiPSC-derived cardiac cells improved myocardial recovery without increasing the frequency of arrhythmogenic complications and may provide an acellular therapeutic option for myocardial injury.”

At UAB, Gao was a postdoctoral fellow in Biomedical Engineering, a joint department of the UAB School of Medicine and the UAB School of Engineering. Zhang is chair of the department.

Studies in large animals are necessary to identify, characterize and quantify responses to potential treatments. Prior to this current study, the feasibility of hiPSC-CC exosomes for cardiac therapy had been shown only in mouse models and in vitro work.

In the UAB experiments, juvenile pigs with experimental heart attacks had one of three treatments injected into the damaged myocardium: 1) a mixture of cardiomyocytes, endothelial cells and smooth muscle cells derived from human induced pluripotent stem cells, 2) exosomes extracted from the three cell types, or 3) homogenized fragments from the three cell types.

The researchers had two primary findings from the pig studies. First, they found that measurements of left-ventricle function, infarct size, wall stress, cardiac hypertrophy, apoptosis and angiogenesis in animals treated with hiPSC-CCs, hiPSC-CC fragments or hiPSC-CC exosomes were similar and significantly improved compared to animals that recovered without any of the three experimental treatments. Second, they found that exosome therapy did not increase the frequency of arrhythmia.

In experiments with cells or aortic rings grown in culture, they found that exosomes produced by hiPSC-CCs promoted blood vessel growth in cultured endothelial cells and isolated aortic rings. Furthermore, the exosomes protected cultured hiPSC-cardiomyocytes from the cytotoxic effects of serum-free low-oxygen media by reducing the programmed cell death called apoptosis and by maintaining intracellular calcium homeostasis, which has a direct beneficial effect on heart conductivity. The exosomes also increased cellular ATP content, which is beneficial since deficiencies in cellular ATP metabolism are believed to contribute to the progressive decline in heart function for patients with left ventricle hypertrophy and heart failure.

The researchers also found that some of these in vitro beneficial effects could also be mediated by synthetic mimics of the 15 most abundant microRNAs found in the hiPSC-CC exosomes. The researchers noted that knowledge of the potential role of microRNAs in clinical applications is still far from complete.

###

Co-authors with Gao and Zhang for the study, “Exosomes secreted by hiPSC-derived cardiac cells improve recovery from myocardial infarction in swine,” are Lu Wang, Yuhua Wei, Prasanna Krishnamurthy, Gregory P. Walcott and Philippe Menasché, UAB Department of Biomedical Engineering. Menasché also has an appointment at the Université de Paris, France. Gao is now at Tongji University School of Medicine, Shanghai, China.

Support came from National Institutes of Health grants HL95077, HL114120, HL131017, HL138023, HL149137 and HL134764.

At UAB, Zhang holds the T. Michael and Gillian Goodrich Endowed Chair of Engineering Leadership.

Media Contact
Jeff Hansen
[email protected]

Original Source

https://www.uab.edu/news/research/item/11585-exosome-treatment-improves-recovery-from-heart-attacks-in-a-preclinical-study

Related Journal Article

http://dx.doi.org/10.1126/scitranslmed.aay1318

Tags: CardiologyCell BiologyMedicine/HealthPhysiologyTrauma/Injury
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Epicardial Fat: Protector or Threat to Heart Health?

July 26, 2025
blank

Glymphatic Asymmetry Linked to Parkinson’s Onset Side

July 26, 2025

Theta Stimulation Boosts Conflict Resolution in Parkinson’s

July 26, 2025

Faecal Transplants Show Safety in Parkinson’s Pilot

July 26, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    53 shares
    Share 21 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding FLS2 Unveils Broad Pathogen Detection Principles

Advanced Pressure-Velocity Patch Enhances Flight Detection

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.