• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, September 28, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Electrons take flight at the nanoscale

Bioengineer by Bioengineer
September 19, 2023
in Chemistry
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

RIVERSIDE, Calif. — A study showing how electrons flow around sharp bends, such as those found in integrated circuits, has the potential to improve how these circuits, commonly used in electronic and optoelectronic devices, are designed. 

Electrofoil

Credit: QMO Lab, UC Riverside.

RIVERSIDE, Calif. — A study showing how electrons flow around sharp bends, such as those found in integrated circuits, has the potential to improve how these circuits, commonly used in electronic and optoelectronic devices, are designed. 

It has been known theoretically for about 80 years that when electrons travel around bends, they tend to heat up because their flow lines get squished locally. Until now, however, no one had measured the heat, for which imaging the flow lines is first needed.

The research team, led by Nathaniel M. Gabor at the University of California, Riverside, imaged streamlines of electric current by designing an “electrofoil,” a new type of device that allows for the contortion, compression, and expansion of streamlines of electric currents in the same way airplane wings contort, compress, and expand the flow of air.

“Electric charge moves similarly to how air flows over the surface of an airplane wing,” said Gabor, a professor of physics and astronomy. “While it is easy to image the flow of air by using, say, streams of smoke or steam in a wind tunnel, as often seen in car commercials, imaging the streamlines of electric currents is far more difficult.”

Gabor said the team combined laser imaging with novel light-sensitive devices to come up with the first images of photocurrent streamlines through a working device. A photocurrent is an electric current induced by the action of light.

“If you know how the electrons are flowing you can then know how to prevent them causing deleterious effects, such as heating up the circuit,” Gabor said. “With our technique, you can now assess exactly where and how the electrons are flowing, giving us a powerful tool to visualize, characterize, and measure charge flow in optoelectronic devices.”

Study results appear in the Proceedings of the National Academy of Sciences.

Gabor explained that when electrons gain kinetic energy they heat up. Ultimately, they heat the material around them, such as wires that can risk melting. 

“If you get a heat spike in your computer, your circuits start to die,” he said. “This is why when our computers overheat, they shut off. It’s to protect circuits that could get damaged because of all the heat being dissipated in the metals.”

Gabor’s team designed the electrofoils in the lab as little wing shapes in nanoscale devices that make the electrons flow around them, similar to how air molecules flow around an airplane wing.

“We wanted a shape that could give us different rates of turning, something with a continuous curvature to it,” Gabor said. “We took inspiration from airplane wings, which have a gradual curve. We forced the current to flow around the electrofoil, which offers different angles of flight. The sharper the angle, the more the compression of the flow lines. In more and more materials, we are starting to find that electrons behave like liquids. So rather than design devices based on, say, electrical resistance, we can adopt an approach with plumbing in mind and design pipelines for electrons to flow through.” 

In their experiments, Gabor and his colleagues used a microscopy method that employs a uniform rotating magnetic field to image photocurrent streamlines through ultrathin devices made of a layer of platinum on yttrium iron garnet, or YIG. YIG is an insulator but allows for a magnetic field effect when a thin layer of platinum is glued to it. 

“The magnetic field effect shows up only at the interface of this garnet crystal and platinum,” Gabor said. “If you can control the magnetic field, you control the current.”

To generate a photocurrent in a desired direction, the researchers directed a laser beam on YIG, with the laser serving as a local heat source. An effect known as the “photo-Nernst effect” generates the photocurrent whose direction is controlled by the external magnetic field.

“Direct imaging to track photocurrent streamlines in quantum optoelectronic devices remains a key challenge in understanding exotic device behavior,” Gabor said. “Our experiments show that photocurrent streamline microscopy is a robust new experimental tool to visualize a photocurrent in quantum materials. This tool helps us look at how electrons behave badly.” 

Gabor explained that it is well known that electrons behave in “weird ways” under specific conditions, especially in very small devices. 

“Our technique can now be used to better study them,” he said. “If I was trying to design an integrated circuit and wanted to know where heat might originate in it, I would want to know where the current flow lines are being squeezed. Our technique can help design circuits and estimate what to avoid and suggests you should not have sharp bends in your wires. Wires should be gradually curved. But that is not the state of the art right now.” 

Gabor was joined in the study by David Mayes, Farima Farahmand, Maxwell Grossnickle, Mark Lohmann, Mohammed Aldosary, Junxue Li, Vivek Aji, and Jing Shi of UCR, and Justin C.W. Song at Nanyang Technological University, Singapore. Shi’s lab at UCR is one of the best in the world at making YIG.

The research was funded by a Presidential Early Career Award for Scientists and Engineers (PECASE) through the Air Force Office of Scientific Research, National Science Foundation, Army Research Office Electronics Division, and U.S. Department of Energy.

The research paper is titled “Mapping the intrinsic photocurrent streamlines through micromagnetic heterostructure devices.”

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California’s diverse culture, UCR’s enrollment is more than 26,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual impact of more than $2.7 billion on the U.S. economy. To learn more, visit www.ucr.edu.



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.222181512

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Mapping the intrinsic photocurrent streamlines through micromagnetic heterostructure devices

Article Publication Date

18-Sep-2023

COI Statement

The authors declare no competing interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

Necroptosis is a form of programmed necrosis

Experts present pioneering vision on reducing brain disorders by 2050

September 28, 2023
California Golden Bears logo

Accelerating sustainable semiconductors with ‘multielement ink’

September 28, 2023

Intense lasers shine new light on the electron dynamics of liquids

September 28, 2023

Sandcastle worm nests inspire new low-carbon building materials

September 28, 2023

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Accounting for oxygen in modeling coastal ecosystems

Low-income communities face dual barriers to maternity care access

Innovative approach unveiled: Boosting terpenoid bioproduction via remodeling of isoprene pyrophosphate metabolism

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In