• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, April 13, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Earth’s deep mantle may have proton rivers made of superionic phases

Bioengineer by Bioengineer
March 9, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Qingyagn Hu

Pierfranco Demontis said in 1988, “Ice becomes a fast-ion conductor at high pressure and high temperatures,” but his prediction was only hypothetical until recently. After 30 years of study, superionic water ice was verified experimentally in 2018. Superionicity may eventually explain the strong magnetic field in giant planetary interiors.

What about Earth, whose interiors are also under extreme pressure and temperature conditions? Although three-quarters of Earth’s surface is covered by water, standalone water or ice rarely exists in Earth’s interiors. The most common unit of “water” is hydroxyl, which is associated with host minerals to make them hydrous minerals. Here, a research group led by Dr. Qingyang Hu, Dr. Duckyoung Kim, and Dr. Jin Liu from the Center for High Pressure Science and Technology Advanced Research discovered that one such hydrous mineral also enters an exotic superionic phase, similar to water ice in giant planets. The results are published in Nature Geosciences.

“In superionic water, hydrogen will get released from oxygen and become liquid-like, and move freely within the solid oxygen lattice. Similarly, we studied a hydrous mineral iron oxide-hydroxide (FeOOH), and the hydrogen atoms move freely in the solid oxygen lattice of FeO2,” said Dr. He, who conducted the computational simulation.

“It developed into the superionic phase above about 1700°C and 800,000 times normal atmospheric pressure. Such pressure and temperature conditions ensure a large portion of Earth’s lower mantle can host the superionic hydrous mineral. These deep regions may have rivers made of protons, which flow through the solids.” added Dr. Kim.

Guided by their theoretical predictions, the team then tried to verify this predicted superionic phase in hot FeOOH by carrying out high-temperature and high-pressure experiments using a laser-heating technique in a diamond anvil cell.

“It is technically challenging to recognize the motion of H atoms experimentally; however, the evolution of O-H bonding is sensitive to Raman spectroscopy,” said Dr. Hu, one of the lead-authors. “So, we tracked the evolution of the O-H bond and captured this exotic state in its ordinary form.”

They found that the O-H bonding softens abruptly above 73,000 times normal atmospheric pressure, along with ~ 55% weakening of the O-H Raman peak intensity. These results indicate that some H+ may be delocalized from oxygen and become mobile, thus, weakening the O-H bonding, consistent with simulations. “The softening and weakening of the O-H bonding at high-pressure and room-temperature conditions can only be regarded as a precursor of the superionic state because high temperature is required to increase the mobility beyond the unit cell,” explained Dr. Hou.

In superionic materials, there will be an obvious conductivity change, which is robust evidence of superionization. The team measured the electrical-conductivity evolution of the sample at high-temperature and pressure conditions. They observed an abrupt increase in electrical conductivity around 1500-1700°C and 121,000 times normal atmospheric pressure, indicating the diffusive hydrogen had covered the entire solid sample and thus, entered a superionic state.

“The pyrite-type FeO2Hx is just the first example of superionic phases in the deep lower mantle,” remarked Dr. Liu, a co-lead author of the work. “It is very likely that hydrogen in the recently-discovered dense hydrogen-bearing oxides that are stable under the deep lower mantle’s high P-T conditions, such as dense hydrous phases, may also exhibit superionic behavior.”

###

This work has important implications for Earth science because a superionic phase will dramatically change the geophysical picture of electrical conductivity, magnetism, and materials transportation. Because materials exchange in-between solids are extremely inefficient, the mantle convection was previously thought to be slow, often described by thousands to millions of years. There is no direct observation of how materials are cycling thousands of kilometers below the surface. However, the existence of a superionic phase suggests the rate of mantle convection could be magnitudes higher. Similar to rivers, fast-moving hydrogen connects remote regions by transporting heat and mass. The solid Earth could be more dynamic than previously thought.

More information: “Superionic iron oxide-hydroxide in Earth’s deep mantle”, Mingqiang Hou et al., Nature Geoscience https://doi.org/10.4121/13487643.v1 (2021).

Media Contact
Haini Dong
[email protected]

Tags: Earth ScienceEnergy SourcesGeophysics/GravityHydrology/Water Resources
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Jan Rajchmann Award for OLED professor Karl Leo

April 12, 2021
IMAGE

Technique allows mapping of epigenetic information in single cells at scale

April 12, 2021

Poop core records 4,300 years of bat diet and environment

April 12, 2021

Centrifugal multispun nanofibers put a new spin on COVID-19 masks

April 12, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    852 shares
    Share 341 Tweet 213
  • Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    60 shares
    Share 24 Tweet 15
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    56 shares
    Share 22 Tweet 14
  • A sturdier spike protein explains the faster spread of coronavirus variants

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

cancerPublic HealthInfectious/Emerging DiseasesCell BiologyClimate ChangeEcology/EnvironmentMedicine/HealthBiologyMaterialsGeneticsChemistry/Physics/Materials SciencesTechnology/Engineering/Computer Science

Recent Posts

  • Ancient ammonoids’ shell designs may have aided buoyancy control
  • Basketball Mathematics scores big at inspiring kids to learn
  • Past Global Changes Horizons – a new paleoscience magazine for teenagers and young adults
  • ETRI develops a haptic film activated by LEDs
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In