• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, January 23, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Breakthrough could lead to “artificial skin”

Bioengineer by Bioengineer
September 18, 2013
in Bioengineering
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Using tiny gold particles and a kind of resin, a team of scientists at the Technion-Israel Institute of Technology has discovered how to make a new kind of flexible sensor that one day could be integrated into electronic skin, or e-skin. If scientists learn how to attach e-skin to prosthetic limbs, people with amputations might once again be able to feel changes in their environments. The findings appear in the June issue of ACS Applied Materials & Interfaces.

The secret lies in the sensor’s ability to detect three kinds of data simultaneously. While current kinds of e-skin detect only touch, the Technion team’s invention “can simultaneously sense touch, humidity, and temperature, as real skin can do,” says research team leader Professor Hossam Haick. Additionally, the new system “is at least 10 times more sensitive in touch than the currently existing touch-based e-skin systems.”

Researchers have long been interested in flexible sensors, but have had trouble adapting them for real-world use. To make its way into mainstream society, a flexible sensor would have to run on low voltage (so it would be compatible with the batteries in today’s portable devices), measure a wide range of pressures, and make more than one measurement at a time, including humidity, temperature, pressure, and the presence of chemicals. In addition, these sensors would also have to be able to be made quickly, easily, and cheaply.

The Technion team’s sensor has all of these qualities. The secret is the use of monolayer-capped nanoparticles that are only 5-8 nanometers in diameter. They are made of gold and surrounded by connector molecules called ligands. In fact, “monolayer-capped nanoparticles can be thought of as flowers, where the center of the flower is the gold or metal nanoparticle and the petals are the monolayer of organic ligands that generally protect it,” says Haick.

The team discovered that when these nanoparticles are laid on top of a substrate – in this case, made of PET (flexible polyethylene terephthalate), the same plastic found in soda bottles – the resulting compound conducted electricity differently depending on how the substrate was bent. (The bending motion brings some particles closer to others, increasing how quickly electrons can pass between them.) This electrical property means that the sensor can detect a large range of pressures, from tens of milligrams to tens of grams. “The sensor is very stable and can be attached to any surface shape while keeping the function stable,” says Dr. Nir Peled, Head of the Thoracic Cancer Research and Detection Center at Israel’s Sheba Medical Center, who was not involved in the research.

And by varying how thick the substrate is, as well as what it is made of, scientists can modify how sensitive the sensor is. Because these sensors can be customized, they could in the future perform a variety of other tasks, including monitoring strain on bridges and detecting cracks in engines.
“Indeed,” says Dr. Peled, “the development of the artificial skin as biosensor by Professor Haick and his team is another breakthrough that puts nanotechnology at the front of the diagnostic era.”

The research team also included Meital Segev-Bar and Gregory Shuster, graduate students in the Technion’s Russell Berrie Nanotechnology Institute, as well as Avigail Landman and Maayan Nir-Shapira, undergraduate students in the Technion’s Chemical Engineering Department. Landman and Nir-Shapira are recipients of this year’s Norman and Barbara Seiden Family Prizes For Multidisciplinary Undergraduate Student Projects in Optoelectronics, Microelectronics and Nanosciences.

Story Source:
The above story is reprinted from materials provided by American Technion Society, Kevin Hattori.

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Robo-fish

September 19, 2016
blank

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016

Sixteen MIT grad students named Siebel Scholars for 2017

September 16, 2016
Next Post
blank

Stem Cell Transplants Clear HIV in Two Patients in Study

blank

Bioengineering fungi for biofuels and chemicals production

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    65 shares
    Share 26 Tweet 16
  • New drug form may help treat osteoporosis, calcium-related disorders

    40 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Technology/Engineering/Computer ScienceBiologyClimate ChangePublic HealthMaterialsInfectious/Emerging DiseasesMedicine/HealthcancerGeneticsCell BiologyEcology/EnvironmentChemistry/Physics/Materials Sciences

Recent Posts

  • Regulating the ribosomal RNA production line
  • A professor from RUDN University developed new liquid crystals
  • New technique builds super-hard metals from nanoparticles
  • No more needles for diagnostic tests?
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In