• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, June 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Brain research reveals a circuit for cocaine relapse

Bioengineer by Bioengineer
March 18, 2019
in Health
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A brain circuit responsible for cocaine-seeking behavior during relapse has been identified, report Medical University of South Carolina researchers. Targeting neurons in that circuit could offer a new approach to treating cocaine addiction.

IMAGE

Credit: Image courtesy of Dr. Jasper Heinsbroek., author of the March 13, 2019 Journal of Neuroscience article: http://www.jneurosci.org/content/39/11/2041

Approximately 1.5 million Americans use cocaine in a given year, according to the National Institute on Drug Abuse. Many are repeat users. Unfortunately, there are currently no FDA-approved medicinal treatments for cocaine addiction.

Behavioral therapy is the only treatment option for patients with cocaine addiction. Unfortunately, many treated patients remain susceptible to relapse when re-exposed to cues, such as settings or specific places, which remind them of the drug experience.

“If a cocaine addict who is used to doing cocaine in his or her sports car goes through behavioral therapy, it will be difficult to remove the cue of the sports car when he or she finishes therapy. That can result in a relapse,” explains noted addiction researcher Peter W. Kalivas, Ph.D.

Kalivas is a distinguished university professor and chair of the Department of Neuroscience at the Medical University of South Carolina (MUSC).

Kalivas and his colleagues report in the March 13, 2019 issue of the Journal of Neuroscience that they have identified a type of neuron that is critical for cocaine-seeking behaviors in rodents.

These neurons, known as dopamine D1 receptor-expressing medium spiny projection neurons (D1-MSNs), are located in a well-known area of the reward system, the nucleus accumbens. The team also discovered that these neurons drive drug seeking through their projections to a specific part of the brain, the ventral pallidum (VP).

The team includes senior author Jasper Heinsbroek, Ph.D., a postdoctoral scholar at MUSC working with Kalivas, and first author Thibaut Pardo-Garcia. Pardo-Garcia was a post-baccalaureate student in the Kalivas laboratory when the study was conducted and is currently a graduate student at the University of Michigan.

“It’s kind of a breakthrough that Jasper has shown very definitively that this ventral pallidum output is actually carrying the drive to engage in the drug-seeking behavior,” explains Kalivas.

D1-MSN co-exist in the nucleus accumbens alongside another cell-type, the D2-MSNs. Both cells play a critical role in the brain system that regulates goal-directed behavior. Goal-directed behavior can be geared towards looking for shelter, finding a mate, or even getting high. As such, D1-MSNs activity could reinforce behaviors that would lead to drug relapse, while D2-MSNs instead may help avert these behaviors.

“There is a clear distinction between the function of these two types of neurons within the nucleus accumbens,” explains Heinsbroek.

“Increased activity of D1-MSNs after drug use leads to higher motivation to seek drugs. Exposure to drugs reduces the capacity of D2-MSNs to limit excessive motivation. This can lead to a strong drive to seek drugs over natural rewards such as food and shelter in the presence of drug cues.”

To investigate how D1-MSNs drive the motivation to seek drugs, the MUSC team traced the connections of these neurons. They showed that individual neurons project to both the VP and another major area that regulates motivation, the ventral mesencephalon (VM).

To help identify whether the VP or VM projection is responsible for cocaine-seeking behavior, the researchers used a transgenic rat model provided by collaborators at the National Institute of Drug Abuse. This animal model allowed the researchers to inhibit the activity of D1-MSNs and their projections to the VP versus the VM.

The MUSC team found that cocaine seeking continued to exist when the VM projections were inhibited. However, inhibiting projections to the VP strongly diminished the motivation to seek cocaine.

“These transgenic rats allowed us to specifically target the projections of D1-MSNs using genetic technology,” explains Heinsbroek. “Without them, identifying D1 projections to the VP as important drivers of cocaine seeking would not have been possible.”

These findings open a new avenue of research into cocaine addiction. They also point to novel therapeutic targets that merit further investigation. Kalivas and his laboratory aim to continue to explore the mechanisms that underlie drug addiction because, as with these findings, they could hold the key to future therapies.

“We need to find out how drugs change the brain so that we can actually cure people who are afflicted,” says Kalivas. “We have discovered a circuit that is critical for relapse and identified a specific target, which we could potentially go in and modify and have a chance at curing addiction.”

###

About MUSC

Founded in 1824 in Charleston, The Medical University of South Carolina is the oldest medical school in the South. Today, MUSC continues the tradition of excellence in education, research, and patient care. MUSC educates and trains more than 3,000 students and residents, and has nearly 13,000 employees, including approximately 1,500 faculty members. As the largest non-federal employer in Charleston, the university and its affiliates have collective annual budgets in excess of $2.2 billion. MUSC operates a 700-bed medical center, which includes a nationally recognized Children’s Hospital, the Ashley River Tower (cardiovascular, digestive disease, and surgical oncology), Hollings Cancer Center (a National Cancer Institute-designated center) Level I Trauma Center, and Institute of Psychiatry. For more information on academic programs or clinical services, visit musc.edu. For more information on hospital patient services, visit muschealth.org.

Media Contact
Heather Woolwine
[email protected]

Related Journal Article

http://dx.doi.org/10.1523/JNEUROSCI.2822-18.2018

Tags: AddictionBiotechnologyDrugsMedicine/HealthneurobiologyNeurochemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Unlocking Parkinson’s Secrets Through Digital Language Analysis

June 23, 2025
High-Density Brain-Wide Neural Recording in Primates

High-Density Brain-Wide Neural Recording in Primates

June 23, 2025

Closed-Loop Stimulation Halts Epilepsy, Preserves Memory

June 23, 2025

Cholinergic Neurons Control Brain Blood Flow and Fluid

June 23, 2025
Please login to join discussion

POPULAR NEWS

  • Green brake lights in the front could reduce accidents

    Study from TU Graz Reveals Front Brake Lights Could Drastically Diminish Road Accident Rates

    161 shares
    Share 64 Tweet 40
  • Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    72 shares
    Share 29 Tweet 18
  • New Study Uncovers Unexpected Side Effects of High-Dose Radiation Therapy

    77 shares
    Share 31 Tweet 19
  • How Scientists Unraveled the Mystery Behind the Gigantic Size of Extinct Ground Sloths—and What Led to Their Demise

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Quantifying the Benefits and Trade-Offs of Planting Corn After Soybeans: New Study Reveals Insights

Parker Solar Probe Team Honored with Collier Trophy for Historic Solar Encounter

New USDA Grant Launches Study on Hurricane Helene’s Flood Effects on Agricultural Land

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.