• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, June 3, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Brain May Rely On Computer-Like Mechanism

Bioengineer by Bioengineer
September 25, 2013
in Bioengineering
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Our brains give us the remarkable ability to make sense of situations we’ve never encountered before — a familiar person in an unfamiliar place, for example, or a coworker in a different job role — but the mechanism our brains use to accomplish this has been a longstanding mystery of neuroscience.

brain_and_computer

Now, researchers at the University of Colorado Boulder have demonstrated that our brains could process these new situations by relying on a method similar to the “pointer” system used by computers. “Pointers” are used to tell a computer where to look for information stored elsewhere in the system to replace a variable.

For the study, published today in the Proceedings of the National Academy of Sciences, the research team relied on sentences with words used in unique ways to test the brain’s ability to understand the role familiar words play in a sentence even when those words are used in unfamiliar, and even nonsensical, ways.

For example, in the sentence, “I want to desk you,” we understand the word “desk” is being used as a verb even though our past experience with the word “desk” is as a noun.

“The fact that you understand that the sentence is grammatically well formed means you can process these completely novel inputs,” said Randall O’Reilly, a professor in CU-Boulder’s Department of Psychology and Neuroscience and co-author of the study. “But in the past when we’ve tried to get computer models of a brain to do that, we haven’t been successful.”

This shows that human brains are able to understand the sentence as a structure with variables — a subject, a verb and often, an object — and that the brain can assign a wide variety of words to those variables and still understand the sentence structure. But the way the brain does this has not been understood.

Computers routinely complete similar tasks. In computer science, for example, a computer program could create an email form letter that has a pointer in the greeting line. The pointer would then draw the name information for each individual recipient into the greeting being sent to that person.

In the new study, led by Trenton Kriete, a postdoctoral researcher in O’Reilly’s lab, the scientists show that the connections in the brain between the prefrontal cortex and the basal ganglia could play a similar role to the pointers used in computer science. The researchers added new information about how the connections between those two regions of the brain could work into their model.

The result was that the model could be trained to understand simple sentences using a select group of words. After the training period, the researchers fed the model new sentences using familiar words in novel ways and found that the model could still comprehend the sentence structure.

While the results show that a pointer-like system could be at play in the brain, the function is not identical to the system used in computer science, the scientists said. It’s similar to comparing an airplane’s wing and a bird’s wing, O’Reilly said. They’re both used for flying but they work differently.
In the brain, for example, the pointer-like system must still be learned. The brain has to be trained, in this case, to understand sentences while a computer can be programmed to understand sentences immediately.
“As your brain learns, it gets better and better at processing these novel kinds of information,” O’Reilly said.

Story Source:

The above story is based on materials provided by University of Colorado at Boulder.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

February 4, 2023
blank

Robo-fish

September 19, 2016

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    40 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Deep sea surveys detect over five thousand new species in future mining hotspot

    35 shares
    Share 14 Tweet 9
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ASCO: Targeted therapy induces responses in HER2-amplified biliary tract cancer

For advanced, HER2-amplified bile duct cancers, antibody treatment trial shows promising results

Startups to unveil cutting-edge point-of-care technologies at Boston medtech event

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In