• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 18, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Botulism breakthrough? Taming botulinum toxin to deliver therapeutics

Bioengineer by Bioengineer
January 8, 2021
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Treatment reverses paralysis in mice; offers a general delivery platform for neurologic drugs

IMAGE

Credit: Sicai Zhang/Dong Lab, Boston Children’s Hospital

While rare, botulism can cause paralysis and is potentially fatal. It is caused by nerve-damaging toxins produced by Clostridium botulinum — the most potent toxins known. These toxins are often found in contaminated food (home canning being a major culprit). Infants can also develop botulism from ingesting C. botulinum spores in honey, soil, or dust; the bacterium then colonizes their intestines and produces the toxin.

Once paralysis develops, there is no way to reverse it, other than waiting for the toxins to wear off. People with serious cases of botulism may need to be maintained on ventilators for weeks or months. But a new treatment approach and delivery vehicle, described today (?) in Science Translational Medicine, could change that.

“There are anti-toxins, but these only work before the toxins enter the motor neurons,” says Min Dong, PhD, a researcher in Boston Children’s Hospital’s Department of Urology and corresponding author on the paper. “What we have developed is the first therapy that can eliminate toxins after they get inside neurons.”

If proven in humans, the approach would represent a breakthrough in treating botulism. In mice, the treatment successfully got inside neurons, reversed muscle paralysis within hours, and enabled mice to withstand doses of botulinum toxin that would otherwise be lethal.

Letting a toxin lead the way

Dong and his colleagues needed to surmount two technical barriers that have prevented the botulism from being treated effectively in the past. Intriguingly, their solution lay in botulinum toxin itself.

“One barrier to treatment has been getting across the cell membrane, which is difficult for protein drugs,” explains Shin-Ichiro Miyashita, PhD, a postdoctoral fellow in Dong’s lab and first author on the paper. “The other is targeting specific cell types, and in this case specificity toward motor neurons and nerve terminals. We took advantage of the fact that botulinum neurotoxins target motor neurons naturally and efficiently, and can deliver a protein cargo across cell membranes.”

The treatment is therefore two-pronged. A botulinum toxin (detoxified through introduced mutations) is the delivery vehicle. The cargo — i.e., the active drug — is a mini-antibody derived from the antibodies of camels, developed by collaborator Charles Shoemaker, PhD, at Tufts University. The team showed that two of these so-called nanobodies can be delivered in tandem into neurons, neutralizing botulinum toxins type A and B at one go.

But there was one more problem to solve.

“This idea and approach had been attempted, but it was difficult to completely get rid of toxicity,” says Dong, “until we identified a new toxin, botulinum neurotoxin X, in 2017. Unlike other botulinum toxins, this new toxin shows no toxicity after we introduce mutations, and serves as a safe delivery tool.”

Botox reversal

Besides botulism, Dong thinks the new treatment could be useful as a “botox reversal” agent. Botox injections, using tiny quantities of the type A botulinum toxin, can safely treat wrinkles and many other medical conditions like neck spasms, excessive sweating, or overactive bladder. However, when the injection goes awry, botox can cause unwanted muscle paralysis as a side effect, and patients have to live with the paralysis for months.

“We can potentially inject our therapeutic protein and get rid of botox in neurons and paralysis within a few hours,” Dong says.

A general delivery platform for neuroactive drugs?

The toxin-guided approach may offer a platform for getting biologic drugs into neurons to treat other disorders, Dong believes. Currently, most biologic drugs act only on cell-surface targets and cannot get into the cell’s interior.

“We provide a protein-based drug delivery platform that achieves highly specific targeting of neurons and efficient penetration of cell membranes,” Dong says. “Combined with nanobodies, which can be developed fairly readily against any protein of interest, this platform can be used to develop therapeutics that modulate proteins and biological processes inside neurons. Its modular nature even allows us to target cell types other than neurons by switching the cell-targeting domain. This could present a general approach for precision drug delivery into cells.”

###

Jie Zhang and Sicai Zhang of Boston Children’s Hospital and Charles Shoemaker of Tufts University are co-authors. The research was supported by the National Institutes of Health and Intelligence Advanced Research Projects Activity (IARPA).

Media Contact
Erin Tornatore
[email protected]

Original Source

https://discoveries.childrenshospital.org/botulism-treatment-delivery-platform/

Related Journal Article

http://dx.doi.org/10.1126/scitranslmed.aaz4197

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyMedicine/HealthMolecular BiologyneurobiologyPharmaceutical ChemistryPharmaceutical ScienceToxicology
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Scientists shed light on how and why some people report “hearing the dead”

January 18, 2021
IMAGE

Changing diets — not less physical activity — may best explain childhood obesity crisis

January 18, 2021

Better diet and glucose uptake in the brain lead to longer life in fruit flies

January 16, 2021

Rapid blood test identifies COVID-19 patients at high risk of severe disease

January 15, 2021
Next Post
IMAGE

Argonne earns HPCwire awards for supercomputing excellence in energy and industry

IMAGE

Bacteria can tell the time

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    39 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Infectious/Emerging DiseasesClimate ChangePublic HealthMedicine/HealthBiologyCell BiologycancerMaterialsGeneticsEcology/EnvironmentChemistry/Physics/Materials SciencesTechnology/Engineering/Computer Science

Recent Posts

  • Scientists shed light on how and why some people report “hearing the dead”
  • Changing diets — not less physical activity — may best explain childhood obesity crisis
  • Better diet and glucose uptake in the brain lead to longer life in fruit flies
  • Rapid blood test identifies COVID-19 patients at high risk of severe disease
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In