• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, March 1, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Biorubber opens doors for tissue engineering

Bioengineer by Bioengineer
March 1, 2014
in Bioengineering
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists from around the world have been contacting an MIT laboratory for samples of “biorubber,” a new material with myriad applications including engineered lungs, heart valves and other elastic tissues.

Biodegradable polymers that are safe to use in the human body are already used in drug delivery, tissue engineering and more. Whether impregnated with medicine or serving as a scaffold for growing cells, such polymers are eventually absorbed by the body when their work is done.

Biorubber

Until now, however, none of these polymers has had the defining property of a rubber band: the ability to stretch and then snap back to its original shape. The dominant material in today’s market is hard and brittle.

“If you think about it, though, many of the organs in the body are elastic,” said Robert Langer, the Germeshausen Professor of Chemical and Biomedical Engineering. For example, the tiny air sacs in lungs expand more than seven times when you inhale. “So if researchers engineer replacements for these organs some day, they certainly want them to mimic the original tissues,” he said.

Hence the query Langer received eight years ago from Dr. Joseph P. Vacanti, head of surgical transplantation at Massachusetts General Hospital. Vacanti, who has collaborated with Langer for years, asked the MIT engineer if he could make an elastic polymer for use in tissue engineering.

Biorubber, announced in the June issue of Nature Biotechnology, is the result. Langer’s coauthors are Yadong Wang, a research associate in chemical engineering; Guillermo A. Ameer, a chemical engineering postdoctoral associate now at Northwestern University; and Barbara J. Sheppard, a comparative pathologist in the Division of Comparative Medicine (now at the Wyeth Genetics Institute).

“This work is extremely important and represents the culmination of several years of effort specifically aimed at new materials that could have applications in the field of tissue engineering,” Vacanti said. “Because of the physical characteristics of the material, it could act as scaffolding to help in the design of heart tissue, blood vessels, cartilage, bone and many other structures of the human body, including whole organs for transplantation. We are now working with Drs. Wang and Langer in exploring its use in these areas of tissue engineering.”

In addition to being strong, biocompatible and inexpensive (because the researchers can make it in large quantities of some 400 grams per batch), biorubber also has a number of other advantages. For example, due to its general chemical composition, it can be easily tailored to have a variety of different properties, such as a fast or slow degradation rate, for different applications. Biorubber’s brittle counterparts are much more difficult to modify.

Although the new material has yet to be approved for use in humans by the Food and Drug Administration, a process that could take years, Wang is optimistic about its success. That’s because its two principal building blocks are well known to be nontoxic. One of these, glycerol, is common in all of our cells, and the other received FDA approval in 1996 for use in another polymer developed by Langer for drug delivery.

Even before publication of the biorubber “birth announcement” in Nature Biotechnology, several scientists learned of the new material from visits to Langer’s lab. Wang has sent samples to researchers in the United States, the United Kingdom, Singapore, Japan and New Zealand. They in turn have been exploring biorubber’s applications in engineering blood vessels, heart valves, liver and cartilage.

“It’s amazing to see how far this project has come,” Wang concluded.

The work was sponsored by the National Heart, Lung and Blood Institute.

Story Source:

The above story is based on materials provided by MIT News Office, Elizabeth A. Thomson.

Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Robo-fish

September 19, 2016
blank

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016

Sixteen MIT grad students named Siebel Scholars for 2017

September 16, 2016

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    648 shares
    Share 259 Tweet 162
  • People living with HIV face premature heart disease and barriers to care

    82 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

MaterialsBiologyPublic HealthEcology/EnvironmentcancerCell BiologyGeneticsTechnology/Engineering/Computer ScienceMedicine/HealthInfectious/Emerging DiseasesClimate ChangeChemistry/Physics/Materials Sciences

Recent Posts

  • Microplastic sizes in Hudson-Raritan Estuary and coastal ocean revealed
  • Cancer: a new killer lymphocyte enters the ring
  • Single cell sequencing opens new avenues for eradicating leukemia at its source
  • Boston College physicist Brian Zhou receives NSF CAREER Award
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In