• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, June 4, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Better Protein Creation

Bioengineer by Bioengineer
October 2, 2013
in Bioengineering, Proteomics
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Naked mole rats have what any animal would want. They live long lives — about 30 years — and stay healthy until the very end. Now biologists at the University of Rochester have new insights into the animal’s longevity — better-constructed proteins.

Naked mole rats are small, hairless, subterranean rodents native to eastern Africa. (Credit: Adam Fenster/University of Rochester)
Naked mole rats are small, hairless, subterranean rodents native to eastern Africa. (Credit: Adam Fenster/University of Rochester)

Proteins are involved in nearly all functions of an animal cell, and consequently, are essential to all organisms. But before proteins can do their job, they must fold into the appropriate shapes that allow them to connect to and interact with other structures in the cell. In a paper published this week in the Proceedings of the National Academy of Sciences, Vera Gorbunova and Andrei Seluanov describe their discovery of the process in naked mole rats that leads to virtually perfect proteins.

“While this is basic research,” said Gorbunova, “we hope our findings encourage further studies on better protein synthesis.”

Their work focused on naked mole rat ribosomes — the site of protein creation in the animal’s cells — and began by happenstance. Gorbunova and Seluanov were working with ribosome RNA (rRNA) when they made a discovery. After applying a dye to a sample, they studied it under ultraviolet light only to find three dark bands — representing concentrations of different rRNA molecules — not the two bands that are characteristic of all other animals, suggesting that there is a “hidden break” in the naked mole rat rRNA. Since rRNA is an essential part of the protein-creation mechanism, the two biologists decided to see if the broken rRNA affects the quality of naked mole rat proteins.

Ribosome RNA strands act as scaffolds on the ribosome, a protein synthesis machine. Changing the shape of the scaffold can have a profound effect on the organization of the ribosome parts.

Gorbunova and Seluanov discovered that the naked mole rat’s rRNA scaffold is indeed unique. The rRNA strands split at two specific locations and discard the intervening segment. Instead of floating off on their own, the two remaining pieces from each strand stay close to each other and act as a scaffold on which ribosomal proteins are assembled to create a functional ribosome — a molecular machine that puts amino acids together to create proteins. And the results are impressive.

When the ribosome connects amino acids together to create a protein a mistake is occasionally introduced when an incorrect amino acid is inserted. Gorbunova and Seluanov found that the proteins made by naked mole rat cells are up to 40 times less likely to contain such mistakes than the proteins made by mouse cells.

“This is important because proteins with no aberrations help the body to function more efficiently,” said Seluanov.

The next step for the biologists is to split mouse rRNA in the same way to see if it would lead to improved protein creation.

The two biologists hope their work will eventually result in pharmaceutical treatments that modulate protein synthesis in humans, though any medical solution is a long way off.

Story Source:

The above story is based on materials provided by University of Rochester.

Tags: Bioengineering
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

February 4, 2023
blank

Robo-fish

September 19, 2016

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    40 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Deep sea surveys detect over five thousand new species in future mining hotspot

    35 shares
    Share 14 Tweet 9
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phase 3 SWOG Cancer Research Network trial, led by a City of Hope researcher, demonstrates one-year progression-free survival in 94% of patients with Stage 3 or 4 classic Hodgkin lymphoma who received a checkpoint inhibitor combined with chemotherapy

The promise of novel FolRα-targeting antibody drug conjugate in recurrent epithelial ovarian cancer

Carbon-based stimuli-responsive nanomaterials: classification and application

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In