• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, May 20, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Arrival of land plants changed Earth’s climate control system

Bioengineer by Bioengineer
July 15, 2021
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The arrival of plants on land about 400 million years ago may have changed the way the Earth naturally regulates its own climate, according to a new study led by researchers at UCL (University College London) and Yale.

IMAGE

Credit: Katmai Preserve NPS Photo/Russ Taylor

The arrival of plants on land about 400 million years ago may have changed the way the Earth naturally regulates its own climate, according to a new study led by researchers at UCL and Yale.

The carbon cycle, the process through which carbon moves between rocks, oceans, living organisms and the atmosphere, acts as Earth’s natural thermostat, regulating its temperature over long time periods.

In a new study, published in the journal Nature, researchers looked at samples from rocks spanning the last three billion years and found evidence of a dramatic change in how this cycle functioned about 400 million years ago, when plants started to colonise land.

Specifically, the researchers noted a change in the chemistry of seawater recorded in the rock that indicates a major shift in the global formation of clay – the “clay mineral factory” – from the oceans to the land.

Since clay forming in the ocean (reverse weathering) leads to carbon dioxide being released into the atmosphere, while clay on land is a byproduct of chemical weathering that removes carbon dioxide from the air, this reduced the amount of carbon in the atmosphere, leading to a cooler planet and a seesawing climate, with alternating ice ages and warmer periods.

The researchers suggested the switch was caused by the spread of land plants keeping soils and clays on land, stopping carbon from being washed into the ocean, and by the growth in marine life using silicon for their skeletons and cell walls, such as sponges, single-celled algae and radiolarians (a group of protozoa), leading to a drop in silicon in the seawater required for clay formation.

Senior author Dr Philip Pogge von Strandmann (UCL Earth Sciences) said: “Our study suggests that the carbon cycle operated in a fundamentally different way for most of Earth’s history compared to the present day.

“The shift, which occurred gradually between 400 to 500 million years ago, appears to be linked to two major biological innovations at the time: the spread of plants on land and the growth of marine organisms that extract silicon from water to create their skeletons and cells walls.

“Before this change, atmospheric carbon dioxide remained high, leading to a stable, greenhouse climate. Since then, our climate has bounced back and forth between ice ages and warmer periods. This kind of change promotes evolution and during this period the evolution of complex life accelerated, with land-based animals forming for the first time.

“A less carbon-rich atmosphere is also more sensitive to change, allowing humans to influence the climate more easily through the burning of fossil fuels.”

First author Boriana Kalderon-Asael, a PhD student at Yale University, said: “By measuring lithium isotopes in rocks spanning most of Earth’s history, we aimed to investigate if anything had changed in the functioning of the carbon cycle over a large time scale. We found that it had, and this change appears to be linked to the growth of plant life on land and silicon-using animal life in the sea.”

In the study, researchers measured lithium isotopes in 600 samples of rock taken from many different locations around the world. Lithium has two naturally occurring stable isotopes – one with three protons and three neutrons, and one with three protons and four neutrons.

When clay forms slowly on land, it strongly favours lithium-6, leaving surrounding water enriched with the other, heavier isotope, lithium-7. Analysing their samples using mass spectrometry, the researchers found a rise in the levels of lithium isotope-7 in seawater recorded in the rock occurring between 400 and 500 million years ago, suggesting a major shift in Earth’s clay production coinciding with the spread of plants on land and emergence of silicon-using marine life.

Clay forms on land as a residue of chemical weathering, the primary long-term process through which carbon dioxide is removed from the atmosphere. This occurs when atmospheric carbon combines with water to form a weak acid, carbonic acid, which falls to the ground as rain and dissolves rocks, releasing ions including calcium ions that flow into the ocean. Eventually, the carbon is locked up in rocks on the ocean floor. In contrast, carbon drawdown by plant photosynthesis is negated once the plants decay, and rarely affects carbon dioxide levels on timescales longer than a few hundred years.

When clay forms in the ocean, carbon stays in the water and is eventually released into the air as part of the continual exchange of carbon that occurs when air meets water.

###

The study received support from the European Research Council and NASA.

Media Contact
Mark Greaves
[email protected]

Tags: Climate ChangeEarth ScienceEvolutionGeographyGeology/SoilOceanography
Share12Tweet8Share2ShareShareShare2

Related Posts

Blood python in Kaeng Krachan National Park in Thailand

Snake trade in Indonesia is not sustainable enough — but it could be

May 20, 2022
Team finds link between dietary cholesterol and influenza severity

Dietary cholesterol worsens inflammation, sickness in mice with influenza

May 19, 2022

Bird flu is driven by ecologically diverse species, with wild ducks, gulls, geese, and poultry playing a role in global spread

May 19, 2022

Avian influenza: How it’s spreading and what to know about this outbreak

May 19, 2022
Please login to join discussion

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VirusUniversity of WashingtonUrogenital SystemVirologyVehiclesWeaponryUrbanizationVaccinesVaccineWeather/StormsZoology/Veterinary ScienceViolence/Criminals

Recent Posts

  • Snake trade in Indonesia is not sustainable enough — but it could be
  • ‘Moth motorways’ could help resist climate change impact
  • Satellites and drones can help save pollinators
  • What the new Jurassic Park movie gets wrong: Aerodynamic analysis causes a rethink of the biggest pterosaur.
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....