• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

An enzyme system for the hydrogen industry

Bioengineer by Bioengineer
May 12, 2021
in Science News
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Platinum-free biocatalyst for fuel cells and water electrolysis

IMAGE

Credit: Dr. James Birrell / MPI CEC

An enzyme could make a dream come true for the energy industry: It can efficiently produce hydrogen using electricity and can also generate electricity from hydrogen. The enzyme is protected by embedding it in a polymer. An international research team with significant participation of scientists from Technical University of Munich (TUM) has presented the system in the renowned science journal Nature Catalysis.

Fuel cells turn hydrogen into electricity, while electrolysers use electricity to split water to produce hydrogen. Both need the rare and thus expensive precious metal platinum as a catalyst. Nature has created a different solution: Enzymes, referred to as hydrogenases. They catalyze the conversion of hydrogen very quickly and almost without energy loss.

However, in the past these biocatalysts were not considered suitable for industrial use because of their high sensitivity to oxygen. Now a research team from the Technical University of Munich (TUM), Ruhr-Universität Bochum (RUB), the French National Centre for Scientific Research (CNRS) in Marseille and the Max-Planck Institute for Chemical Energy Conversion has succeeded in embedding the sensitive enzymes in a protective polymer in a way that makes them viable for use in technical hydrogen conversion.

Durability vs. activity

“When the sensitive hydrogenases are embedded in suitable polymers they continue to work for several weeks, even in the presence of oxygen,” says Nicolas Plumeré, Professor for Electrobiotechnology at the TUM Campus Straubing for Biotechnology and Sustainability. “Without this protection they lose their activity within a matter of minutes.”

Embedding the hydrogenases in polymers whose side chains can transfer electrons, referred to as redox polymers, had nevertheless two decisive disadvantages: a high level of resistance countervailed the flow of electrons through the redox polymer. This required the investment of energy which was then lost in the form of heat. And the embedded hydrogenases completely lost their ability to generate hydrogen.

Fine tuning potential

With a clever selection of the right polymer side chains, the research team has now succeeded in setting the redox potential of the polymer in such a way that only a small overvoltage is necessary to overcome the resistance.

More detailed investigations then revealed that the potential of the side chains had shifted slightly to positive values due to the embedding in the polymer matrix. In a further attempt they used a side chain with a corresponding negative potential. This trick was the breakthrough: The hydrogenase was now capable of catalyzing the reaction in both directions without energy loss.

Biocatalyst for hydrogen conversion

Utilizing this system the research team then built a fuel cell, in which oxygen is reduced by the enzyme bilirubin oxidase from the bacterium Myrothecium verrucaria, while the hydrogenase embedded in the polymer film oxidizes the hydrogen from the bacterium desulfovibrio desulfuricans, generating electricity in the process.

The cell achieved a value, with an open circuit voltage of 1.16 V, the highest ever measured for a system of this type and close to the thermodynamic maximum. With three milliamperes per square centimeter the cell achieved a very high power density for biological cells at the same time.

The system can also be used for the reverse reaction, producing hydrogen by consuming electrons: The energy conversion efficiency is close to 100 percent, even with power densities of over four milliamperes per square centimeter.

Blueprint for new biocatalysts

“The reduction in energy loss has two decisive advantages,” says Nicolas Plumeré. “First, it makes the system significantly more efficient; second, the heat generated in a fuel cell stack at high performance levels would pose a problem for biological systems.”

In order to make their system competitive with systems that use platinum-based catalysts, the team’s ongoing research is now focused on improving the stability of the hydrogenases at higher power densities.

Furthermore, the findings can also be transferred to other highly-active but sensitive catalysts for energy conversion and electrosynthesis. Direct objectives here are primarily carbon dioxide-reducing enzymes that can use electricity to produce liquid fuels or intermediate products from carbon dioxide.

###

The research was funded by a Starting Grant from the European Research Council (ERC), by the French Center National de la Recherche Scientifique (CNRS) and the Aix Marseille Université, the German Research Foundation (DFG) joint funding with the Agence Nationale de la Recherche, the DFG priority program “Iron – Sulfur for Life” (SPP 1927), the Max Planck Society and in the case of the RESOLV cluster of excellence by the Federal Ministry of Education and Research (BMBF) under the Excellence Strategy of the Federal Government and the German Federal States.

Publication:

Reversible H2 oxidation and evolution by hydrogenase embedded in a redox polymer film

Steffen Hardt, Stefanie Stapf, Dawit T. Filmon, James A. Birrell, Olaf Rüdiger, Vincent Fourmond, Christophe Léger & Nicolas Plumeré

Nature Catalysis Vol. 4, 251-258 (2021) – DOI: 10.1038/s41929-021-00586-1

Media Contact
Dr. Andreas Battenberg
[email protected]

Original Source

https://www.tum.de/nc/en/about-tum/news/press-releases/details/36625/

Related Journal Article

http://dx.doi.org/10.1038/s41929-021-00586-1

Tags: BiochemistryBiologyBiotechnologyChemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsIndustrial Engineering/ChemistryMaterialsMicrobiologyMolecular PhysicsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Metabolic Changes Influence Mitochondrial Temperature in HepG2 Cells

Metabolic Changes Influence Mitochondrial Temperature in HepG2 Cells

November 21, 2025

Liver-like Cells Control Lipids During Starvation in Flies

November 21, 2025

Exploring Autism: Behavior Patterns and Personality Links

November 21, 2025

Diatom Analysis Reveals Methomyl Poisoning Insights

November 21, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • Neurological Impacts of COVID and MIS-C in Children

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Metabolic Changes Influence Mitochondrial Temperature in HepG2 Cells

Liver-like Cells Control Lipids During Starvation in Flies

Exploring Autism: Behavior Patterns and Personality Links

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.