• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, January 22, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Aluminium alloy research could benefit manned space missions

Bioengineer by Bioengineer
December 7, 2020
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Manned space missions in spacecraft made of aluminium that is light yet resistant to radiation could be a step nearer following research involving a world-leading facility at the University of Huddersfield.

IMAGE

Credit: University of Huddersfield

The MIAMI-2 – Microscopes and Ion Accelerators for Materials Investigations – facility has helped Dr Matheus Tunes investigate a new alloy that will harden aluminium without increasing its weight significantly.

Spacecraft launched from Earth need to be light, but still have the right amount of fuel to see them achieve orbit. If too heavy, the amount of fuel required would be prohibitive. Once outside of the Earth’s protective magnetic field, a vehicle may then be exposed to potentially destructive amounts of solar radiation, which becomes more important for any long duration mission such as to Mars.

Making spacecraft from aluminium is one solution, as aluminium is a light yet strong material. Alloys help aluminium become harder via precipitation strengthening, but the radiation encountered in space can dissolve the hardening precipitates with potentially disastrous and fatal consequences for astronauts.

But the research carried out at MIAMI-2 in partnership with Montanuniversitaet Leoben (MUL) in Austria has discovered that a particular hardening precipitate of a new aluminium alloy – developed by a group of metallurgists led by Professor Stefan Pogatscher (MUL) – does not dissolve when bombarded with particle radiation when compared with existing data on irradiation of conventional aluminium alloys.

The result is an alloy with a radiation resistant hardening phase called a T-phase, which has a complex crystal structure of Mg32(Zn,Al)49. The research led to a paper that has been published in the prestigious journal Advanced Science, together with an eye-catching cover.

“The idea of the paper was testing these new alloys using the MIAMI facilities, because we can subject the alloy to energetic particle radiation and, at the same time, monitor the effect of this radiation on the alloy microstructure with a transmission electron microscope”, says Matheus.

“We monitored the crystallographic signal of the T-phase as the radiation increased and observed that compared with other conventional aluminium alloys, the alloy we developed was radiation tolerant – meaning that the hardening phase does not dissolve under high radiation doses.

“It sheds light on a very exciting new field of research we call ‘prototypic space materials for stellar-radiation environments’. A nuclear reactor is also an extreme environment, as is the sun with solar cycles, but dynamic instabilities on the sun such as solar flares and coronal mass ejections are more extreme than anything on Earth. The sun is a very efficient nuclear fusion reactor and high-energy particle accelerator.”

Dr Graeme Greaves, Senior Research Fellow at the MIAMI Facility, adds, “when Matt first came to us from Brazil as a postgraduate student he was always looking for new projects and created a number of new collaborations, and I’m very happy that as he is starting the next part of his career in Austria and expanding into new areas, he is continuing to collaborate with us here at the MIAMI facility, with this aluminium alloys project being just one example.”

With manned missions to the moon and Mars currently being planned, the advantages of spacecraft that are light enough to launch and withstand radiation to protect their crews are clear. Next on the agenda for Matheus, Graeme and colleagues is to find out why the alloy behaves the way it does and what further benefits there could be.

“I am particularly proud that I finished my PhD in Huddersfield, I’ve now moved to Austria but still continue to work with Graeme,” Matheus adds. “We have an active collaboration and 2021 will be a busy year for the joint Huddersfield-Leoben space materials research project”.

“We discovered the T-phase is radiation-tolerant, but we haven’t discovered why that is. We have an idea which involves the chemical complexity of the phase that we believe could lead to some very interesting research. We hope that we can make an important contribution to further human exploration of space.”

###

Media Contact
Graeme Greaves
[email protected]

Original Source

https://www.hud.ac.uk/news/2020/december/alloy-research-manned-space-missions-benefits/

Related Journal Article

http://dx.doi.org/10.1002/advs.202002397

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterialsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

New technique builds super-hard metals from nanoparticles

January 22, 2021
IMAGE

Defects may help scientists understand the exotic physics of topology

January 22, 2021

Highly functional membrane developed for producing freshwater from seawater

January 22, 2021

AI: ensuring that humans remain in the center

January 22, 2021
Next Post
IMAGE

Red propolis could be used to treat schistosomiasis

IMAGE

White blood cells may cause tumor cell death — but that’s not good news

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    65 shares
    Share 26 Tweet 16
  • New drug form may help treat osteoporosis, calcium-related disorders

    40 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Technology/Engineering/Computer ScienceBiologyClimate ChangePublic HealthMaterialsInfectious/Emerging DiseasesMedicine/HealthcancerGeneticsCell BiologyEcology/EnvironmentChemistry/Physics/Materials Sciences

Recent Posts

  • Regulating the ribosomal RNA production line
  • A professor from RUDN University developed new liquid crystals
  • New technique builds super-hard metals from nanoparticles
  • No more needles for diagnostic tests?
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In