• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, February 25, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Aging-US: Sulforaphane promotes C. elegans longevity and healthspan

Bioengineer by Bioengineer
February 3, 2021
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

‘The results in this Aging-US research output, indicate that sulforaphane prolongs the lifespan and healthspan of C. elegans through insulin/IGF-1 signaling’

IMAGE

Credit: Correspondence to: Ingrid Herr email: [email protected]

Aging-US published “Sulforaphane promotes C. elegans longevity and healthspan via DAF- 16/DAF-2 insulin/IGF-1 signaling” which reported that the broccoli-derived isothiocyanate sulforaphane inhibits inflammation, oxidative stress and cancer, but its effect on healthspan and longevity are unclear.

The authors used the C. elegans nematode model and fed the wildtype and 9 mutant strains ±sulforaphane.

Sulforaphane increased the lifespan and promoted a health-related phenotype by increasing mobility, appetite and food intake and reducing lipofuscin accumulation.

Mechanistically, sulforaphane inhibited DAF-2-mediated insulin/insulin-like growth factor signaling and its downstream targets AGE-1, AKT-1/AKT-2. This was associated with increased nuclear translocation of the FOXO transcription factor homolog DAF-16. In turn, the target genes sod-3, mtl-1 and gst-4, known to enhance stress resistance and lifespan, were upregulated.

The results in this Aging-US research output, indicate that sulforaphane prolongs the lifespan and healthspan of C. elegans through insulin/IGF-1 signaling. They provide the basis for a nutritional sulforaphane-enriched strategy for the promotion of healthy aging and disease prevention.

Dr. Ingrid Herr from The University of Heidelberg said, “The risk of cancer, cardiovascular disease, and neurodegeneration rises dramatically later in life.”

Pak choy, which is one of the most widely consumed Brassica vegetables in Asian countries, have been reported to enhance antioxidant activity in a cell-free system and exert anti-aging effects in the nematode Caenorhabditis elegans.

C. elegans is one of the most widely used models for aging research due to its short lifespan of approximately 4 weeks and highly conserved key aging-related signaling molecules .

Here, the authors asked whether sulforaphane may influence the lifespan and healthspan of C. elegans.

They found that sulforaphane significantly extends the lifespan of C. elegans and delays age-related phenotype changes.

The analysis of wild-type C. elegans and 9 mutant strains revealed that sulforaphane inhibited DAF-2 insulin/insulin receptor signaling and thereby increased DAF-16 nuclear translocation, resulting in the expression of the sod-3, mtl-1 and gst-4 target genes, which are known mediators of longevity in C. elegans.

The Herr Research Team concluded in their Aging-US Research Paper, “we are the first to report that sulforaphane prolongs the lifespan and increases the healthspan of C. elegans through the inhibition of DAF- 2/insulin/IGF-1 signaling and the activation of DAF- 16/FOXO nuclear transcription in C. elegans. Our study provides a promising hint regarding the suitability of sulforaphane as a new anti-aging drug. However, additional studies in invertebrates and mammalian model organisms are necessary to expand our findings.”

###

Full Text – https://www.aging-us.com/article/202512/text

Correspondence to: Ingrid Herr email: [email protected]

Keywords: Caenorhabditis elegans, aging, sulforaphane, DAF-16 insulin

About Aging-US

Launched in 2009, Aging-US publishes papers of general interest and biological significance in all fields of aging research as well as topics beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, cancer, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR among others), and approaches to modulating these signaling pathways.

To learn more about Aging-US, please visit http://www.Aging-US.com or connect with @AgingJrnl

Aging-US is published by Impact Journals, LLC please visit http://www.ImpactJournals.com or connect with @ImpactJrnls

Media Contact

18009220957×105

[email protected]

Media Contact
Ryan James Jessup
[email protected]

Original Source

https://www.aging-us.com/news_room/sulforaphane-promotes-c-elegans-longevity-and-healthspan

Related Journal Article

http://dx.doi.org/10.18632/aging.202512

Tags: AgingBiologyBusiness/EconomicsEducationGerontologyMedicine/HealthPolicy/Ethics
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Tiny crustaceans’ show fastest repeatable movements ever seen in marine animals

February 25, 2021
IMAGE

Population of critically endangered Bahama Oriole is much larger than previously thought

February 25, 2021

New research on hagfish provides insight into evolutionary origin of the eye

February 25, 2021

Eating human food could mean trouble for urban coyotes, study shows

February 25, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    637 shares
    Share 255 Tweet 159
  • People living with HIV face premature heart disease and barriers to care

    81 shares
    Share 32 Tweet 20
  • Global analysis suggests COVID-19 is seasonal

    37 shares
    Share 15 Tweet 9
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Public HealthcancerChemistry/Physics/Materials SciencesEcology/EnvironmentTechnology/Engineering/Computer ScienceCell BiologyBiologyMedicine/HealthGeneticsMaterialsClimate ChangeInfectious/Emerging Diseases

Recent Posts

  • New ONC, NLM funding supports data exchange and response to COVID-19 pandemic
  • Toronto’s COVID-19 bike lane expansion boosted access to jobs, retail
  • Salk Professors Satchin Panda and Tatyana Sharpee honored with endowed chairs
  • New treatment location challenges thoughts on addiction
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In