• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A thorough characterization of structural variants in human genomes

Bioengineer by Bioengineer
April 16, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Human genomes vary quite a bit from individual to individual. These differences include single nucleotide changes, or “spelling mistakes” in the DNA sequence, but even more variation comes from structural variants, which include additions, deletions and rearrangements of large segments of DNA. A recent study used multiple advanced technologies to dive deeper than ever before to comprehensively characterize the structural variants present in three families, and what their functional consequences might be.

Genome sequencing has become much faster, more accurate and less expensive over the past decade. As a result, more and more human genomes are being sequenced, and our knowledge of what those sequences actually mean for function and disease is growing rapidly.

It has also become clear that the more we learn, the more we appreciate just how little we still know about human genomics. While a linear sequence of ATGCs looks tidy, our genomes are actually dynamic entities that harbor considerable differences between individuals – differences that can alter traits contributing to both normal function and disease.

The genetic difference between individuals contributes to our individuality. These differences include millions of single nucleotide variants – where, for example, one person may have an A, another may have a C at a given position. There are also hundreds of thousands of structural variants (SVs). SVs include segments of DNA that are inserted into or deleted from the genome, segments that are duplicated, and segments that are inverted. SVs are more difficult to identify than single nucleotide variants, and hence it has been unclear just how many SVs really exist in a given human genome.

Now a paper entitled “Multi-platform discovery of haplotype-resolved structural variation in human genomes,” published in Nature Communications, delves deeper into individual genomic differences than ever before.

The work involved a large international team of researchers from the Human Genome Structural Variation Consortium (HGSVC), led by co-first authors Mark Chaisson, Ph.D., Ashley Sanders, Ph.D., and Xuefang Zhao, Ph.D.; co-senior authors Paul Flicek, Ph.D., Ken Chen, Ph.D., Mark Gerstein, Ph.D., Pui-Yan Kwok, M.D., Ph.D., Peter Lansdorp, M.D., Ph.D., Gabor Marth, DSc., Jonathan Sebat, Ph.D., Xinghua Shi, Ph.D., Ali Bashir, Ph.D., Kai Ye, Ph.D., Scott Devine, Ph.D., Michael Talkowski, Ph.D., Ryan Mills, Ph.D., and Tobias Marschall, Ph.D.; and co-corresponding senior authors Jan Korbel, Ph.D., Evan Eichler, Ph.D., and Charles Lee, Ph.D., FACMG, scientific director and professor at The Jackson Laboratory. They used a full suite of genomic technologies to extensively analyze the genomes of three family trios (parents and child). The technologies used include long-read, short-read, and strand-specific sequencing technologies, optical mapping and multiple computer algorithms for SV detection. The results present the most comprehensive catalog of SVs to date in the children’s genomes, including information on which set of parental chromosomes each SV was present on.

In summary, the researchers identified an average of 818,054 small insertions and deletions (genomic alterations that each affected less than 50 bases of DNA) and 27,622 SVs (genomic alterations that affected 50 bases or more of DNA) per genome. Remarkably, they also found an average of 156 inversions per genome, many of which intersected with genomic regions associated with genetic disease syndromes. The researchers found that more than 100,000 variants per individual are actually missed by routine sequencing technologies and commonly-used computer algorithms. For example, 83% of the insertions identified were missed by standard short-read-calling algorithms. In fact, the true numbers of SVs in a given human genome appears to be three- to seven-fold more than most studies typically identify.

Hence, SVs constitute a large amount of genetic variation not commonly captured by current genome sequencing technologies and analytical methods. This implies that the contribution of SVs to human disease has not yet been well-quantified and the expanded SV repertoire can help identify new genetic associations to diseases and improved diagnostic yields in future genetic tests.

###

About The Jackson Laboratory

The Jackson Laboratory is an independent, nonprofit biomedical research institution with more than 2,200 employees. With a mammalian genetics institute as its headquarters campus in Bar Harbor, Maine, it has a genomic medicine institute in Farmington, Conn. and production facilities in Sacramento, Calif., and Ellsworth, Maine. Its mission is to discover precise genomic solutions for disease and empower the global biomedical community in the shared quest to improve human health. For more information, please visit http://www.jax.org.

Media Contact
Sarah Laskowski
[email protected]
http://dx.doi.org/10.1038/s41467-018-08148-z

Tags: BioinformaticsBiologyBiotechnologyGenesGeneticsMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Optimized Tumor Therapy: Phase I Trial of Gapped Scheduling

October 27, 2025

AI-Driven Diabetes Prevention Program Matches Effectiveness of Human-Led Initiatives

October 27, 2025

Predicting Neural Activity in Connectome-Based Recurrent Networks

October 27, 2025

U.S. Stillbirth Rates Higher Than Previously Reported, Frequently Occur Without Clinical Risk Factors

October 27, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1286 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    197 shares
    Share 79 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary AI-Driven Microscope Paves the Way for Autonomous Research Advancements

Innovative Tool Developed to Detect Hidden ‘Zombie Cells’

Epigenetic Changes in PHOX2A, CDH2 Drive Myeloma

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.