• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, March 29, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

A mutual breakdown

Bioengineer by Bioengineer
August 24, 2016
in Bioengineering
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Clownfish fight off predators of anemones that in turn provide habitats for the clownfish, an example of mutualism. But mutualistic relationships aren’t always set in stone; depending on environmental conditions, once-simpatico species can become competitors.

Nature abounds with examples of mutualistic relationships. Think of bees pollinating flowers whose nectar nourishes the bees, or clownfish that fight off predators of anemones that in turn provide habitats for the clownfish. Each species benefits the other, and together their chances of survival are better than if they lived apart.

Now scientists at MIT have found that such mutualistic relationships aren’t always set in stone. Depending on environmental conditions, once-simpatico species can become competitors, and in extreme cases, one species can even drive the other to complete extinction.

Studying two similar strains of yeast, the researchers found that this deterioration in relations is marked by multiple transitions in the species’ degree of codependence. What’s more, such mutualistic relations tend to break down in more “benign” environments, such as nutrient-rich conditions, in which each species isn’t required to rely solely on the other to survive.

The researchers have published their results today in the journal PLOS Biology. The team is led by Jeff Gore, the Latham Family Career Development Associate Professor of Physics at MIT, and includes Tim Hoek, who performed most of the experiments as a research intern in MIT’s Physics of Living Systems group; Eugene Yurtsev, Tommaso Biancalani, and Jinghui Liu of the same group; and Kevin Axelrod of Harvard University.

Breaking down relations

In laboratory experiments, Gore and his colleagues studied the interactions between normally mutualistic strains of yeast that cross-feed, each producing a needed amino acid for the other.

The researchers supplied gradually increasing amounts of nutrients to the yeast and observed population changes in strains grown both together and apart. They found that in nutrient-poor conditions, both strains did better together than they did alone, forming more mutualistic relationships in which each strain depended heavily on the other. The opposite was true in conditions with more plentiful nutrients: The strains seemed to do worse together, with one dominating strain that grew in size while the other dwindled and eventually collapsed.

Interestingly, as the amount of nutrients gradually increased, the relationship between the strains, originally mutualistic, transitioned through multiple phases before devolving into competition, and even extinction of one partner. With just a small amount of extra added nutrients, the strains established an “obligate mutualism,” in which they were obliged to co-exist in order to survive. With more nutrients, a “facultative mutualism” took hold, in which the two strains could survive on their own but did better together. With even more nutrients, this relationship gave way to “parasitism,” in which one strain thrived while the other’s population plummeted.

Finally, when the researchers added the highest concentration of nutrients to the strains, they observed that the yeast’s previously mutualistic relationship completely broke down: The strains were both worse off growing together, with one strain outcompeting the other for nutrients, eventually driving the weaker strain to extinction.

“What’s amazing is, often when we talk about these interactions between species, we say, ‘Oh, a clownfish and an anemone is mutualism, whereas a lion and an antelope is predator-prey.’ We talk about these species having fixed interactions,” Gore says. “Whereas here we see these strains go through all these different regimes, just by changing one knob.”

A “niche overlap”

From their experiments, the researchers developed a simple model to predict the type of mutualistic relationship that would develop between the two strains, given how their populations changed over time.

“In mutualism, we see that first, the abundances of each species become equal, 50-50, and then the overall size of the populations reach equilibrium, whereas in the competitive regime it’s the other way around,” Gore explains. “So we can determine which regime of interaction the species are in, based on the dynamics of the species.”

However, there may be a limit to the extent to which a mutualistic relationship can break down. The researchers note that the two strains of yeast they studied were genetically very similar, and had very similar resource requirements, feeding off similar nutrients to stay alive. This “niche overlap” may predispose a genetically close pair of species to completely break from each other in benign, nutrient-rich conditions, and instead compete for the same resources.

Mutualistic pairs such as clownfish and anemones, or, similarly, ants and acacia trees, may be sufficiently different in their nutritional requirements that they would likely not end up in complete collapse.

“We think the degree of niche overlap will influence how far along the mutualism-parasitism spectrum you would go, when the environment becomes benign,” Gore says.

Ultimately, the group’s results may help scientists better understand the ways in which interactions in nature can change with a changing environment.

“There’s a general idea that more challenging environments favor mutualistic type interactions,” Gore says. “These experiments provide further support for the idea that mutualisms will often break down or become more competitive in more benign environments. Which is something that people have seen some evidence for in natural populations, but this is a nice context in which we can see it happening in a very direct way.”

This research was supported, in part, by the Allen Distinguished Investigator Program and an NIH New Innovator Award.

Story Source:

The above post is reprinted from materials provided by MIT NEWS

The post A mutual breakdown appeared first on Scienmag.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

February 4, 2023
blank

Robo-fish

September 19, 2016

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    66 shares
    Share 26 Tweet 17
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary battery technology to boost EV range 10-fold or more

‘Chemical cube’ tools for building new drugs and agrochemicals

Detecting coral biodiversity in seawater samples

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In