• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, October 2, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A first for ferrocene: Organometallic capsule with unusual charge-transfer interactions

Bioengineer by Bioengineer
August 29, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Ferrocene is an emergent organic-metal hybrid compound, and its accidental discovery has led to the rapid development of organometallic chemistry. Aside from its interesting structure, which consists of an iron atom sandwiched between two pentagonal organic rings, ferrocene has remarkable redox-responsive properties.

Ferrocene-Based Capsule with Unusual Charge-Transfer Interactions

Credit: Tokyo Tech

Ferrocene is an emergent organic-metal hybrid compound, and its accidental discovery has led to the rapid development of organometallic chemistry. Aside from its interesting structure, which consists of an iron atom sandwiched between two pentagonal organic rings, ferrocene has remarkable redox-responsive properties.

Simply put, one can make ferrocene-based compounds reversibly switch between different oxidation states by changing the conditions of their redox environment, which essentially dictates how electron transfers occur between molecules. Although the properties of ferrocene-based compounds could be very useful in materials science, drug delivery, and catalysis, there are almost no known methods to facilely and precisely synthesize multi-ferrocene-based capsules with more than five ferrocene units.

Fortunately, a research team from Tokyo Institute of Technology in Japan has found a solution to this problem. In their latest study, which was conducted by Kazuki Toyama (doctoral student), Assistant Professor Yuya Tanaka, and Professor Michito Yoshizawa, and published in Angewandte Chemie International Edition on 5 July 2023, the researchers found an ingenious way to prepare a ferrocene-based capsule with unusual properties.

The key to the synthesis of the capsule is a ferrocene-containing amphiphile, which the researchers referred to as “FA”. Each FA molecule consists of two hydrophobic ferrocene groups bound to a meta-phenylene ring, which is also connected to two hydrophilic trimethylammonium groups. The bent hydrophobic framework and its hydrophobic effect cause multiple FA molecules to quickly and spontaneously assemble into organometallic capsule (FA)n in water.

Interestingly, the capsule can be reversibly disassembled and assembled by providing appropriate chemical stimuli. For example, adding an oxidant such as iron chloride to water containing (FA)n leads to the immediate disassembly of the capsule. Moreover, the subsequent addition of a reductant such as ascorbic acid neutralizes the oxidant, leading to the quick reassembly of the capsule.

The on-demand assembly and disassembly of the new capsule becomes even more useful when considering that it can bind to guest molecules in the cavity. The researchers found that capsule (FA)n is a more versatile host than previous ones, as Toyama highlights: “In contrast to previous multi-ferrocene compounds, the present capsule efficiently encapsulates typical organic and inorganic dyes, such as perylenetetracarboxylic diimide and copper-phthalocyanine, as well as electron-accepting molecules, such as chloranil and tetracyanoquinodimethane, in water.”

The team discovered unusual host-guest charge-transfer interactions upon the encapsulation of electron-accepting molecules by the capsule (FA)n. The interactions were observed as relatively wide absorption bands, ranging from 650-1350 nm, in the visible to near-infrared spectrum. These interactions could also be reversibly turned on and off by controlling the assembly and disassembly of the capsule.

The present multi-ferrocene-based capsule could find applications across various fields, such as medicine, biotechnology, chemical synthesis, and more. Further studies are already underway. “On the basis of the present achievement, our next study will focus on the development of various types of organometallic capsules, such as ones with magnetic and medicinal properties and catalytic activity,” concludes Dr. Tanaka.

Let us hope that further research into organometallic capsules will lead to exciting new molecular technologies!



Journal

Angewandte Chemie International Edition

DOI

10.1002/anie.202308331

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

A Redox-Responsive Ferrocene-Based Capsule Displaying Unusual Encapsulation-Induced Charge-Transfer Interactions

Article Publication Date

5-Jul-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Schematic application of AEM with multiple cationic side alkyl chains

Synergistic work of cations in anion exchange membranes for OH- transport in fuel cells

September 30, 2023
16x9-33704D_0426_CPA_C-STEEL_WEB

Department of Energy funds new center for decarbonization of steelmaking

September 29, 2023

Ghent University’s research team envisions a bright future with active machine learning in chemical engineering

September 29, 2023

Teams invent a new metallization method of modified tannic acid photoresist patterning

September 29, 2023

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Dense measurement network revealed high level of PM2.5 in Punjab due to crop residue burning and its transport to Haryana and Delhi NCR

Next-generation printing: precise and direct, using optical vortices

Researchers studied thousands of fertility attempts hoping to improve IVF

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In