• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Liquid to gel to bone

Bioengineer by Bioengineer
December 14, 2013
in Bioengineering, Tissue Engineering
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Rice University bioengineers have developed a hydrogel scaffold for craniofacial bone tissue regeneration that starts as a liquid, solidifies into a gel in the body and liquefies again for removal.

Liquid to gel to bone

The material developed in the Rice lab of bioengineer Antonios Mikos is a soluble liquid at room temperature that can be injected to the point of need. At body temperature, the material turns instantly into a gel to help direct the formation of new bone to replace that damaged by injury or disease.

The gel conforms to irregular three-dimensional spaces and provides a platform for functional and aesthetic tissue regeneration. It is intended as an alternative to prefabricated implantable scaffolds.

The invention is the subject of a new paper that appeared online this week in the American Chemical Society journal Biomacromolecules.

Lead author Tiffany Vo, a fourth-year doctoral graduate student in the Mikos lab, earned a Ruth L. Kirschstein National Research Service Award from the National Institute of Dental and Craniofacial Research for her work on the project.

“This new platform technology leverages injectable, thermally responsive, chemically crosslinkable and bioresorbable hydrogels for regenerative medicine applications,” Mikos said. “It enables the formation of scaffolds locally and the delivery of growth factors and stem cells into defects of complex anatomical shapes with minimal surgical intervention.”

Thermosensitive technologies are not new to the field of tissue engineering and regenerative medicine, Mikos said. What makes the poly(N-isopropylacrylamide), or PNiPAAm, scaffold promising is that its chemical cross-linking technology allows the researchers to eliminate gel shrinkage without reducing swelling; this improves its stability so that it serves as an effective delivery vehicle for growth factors and stem cell populations.

Once sufficient quality and quantity of bone tissue have regenerated to fill the defected site, the hydrogel scaffold can be transitioned back into a liquid state and released naturally.

As part of the project, the researchers will test the hydrogel’s enhanced seeding capabilities and ability to promote cellular attachment, crosstalk and proliferation toward greater bone formation. The knowledge will improve the understanding of biomaterial-based therapies for minimally invasive tissue regeneration as viable clinical alternatives.

“The results demonstrate the ability to encapsulate stem cell populations with temperature-sensitive gelling scaffolds for injectable cell delivery with enormous implications for the development of novel therapeutics for craniofacial bone regeneration,” Mikos said.

Story Source:

The above story is based on materials provided by Rice University, Mike Williams.

Share13Tweet8Share2ShareShareShare2

Related Posts

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

February 4, 2023

Robo-fish

September 19, 2016

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    92 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    84 shares
    Share 34 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Survey Reveals Interest in Alternative Cancer Prevention Methods

Cathepsin K Links Glucose Issues and Atherosclerosis

Conserved Small Sequences Revealed by Yeast Ribo-seq

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.