• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Genome-editing tool TALEN outperforms CRISPR-Cas9 in tightly packed DNA

Bioengineer by Bioengineer
January 27, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Composite photo by L. Brian Stauffer

CHAMPAIGN, Ill. — Researchers used single-molecule imaging to compare the genome-editing tools CRISPR-Cas9 and TALEN. Their experiments revealed that TALEN is up to five times more efficient than CRISPR-Cas9 in parts of the genome, called heterochromatin, that are densely packed. Fragile X syndrome, sickle cell anemia, beta-thalassemia and other diseases are the result of genetic defects in the heterochromatin.

The researchers report their findings in the journal Nature Communications.

The study adds to the evidence that a broader selection of genome-editing tools is needed to target all parts of the genome, said Huimin Zhao, a professor of chemical and biomolecular engineering at the University of Illinois Urbana-Champaign who led the new research.

“CRISPR is a very powerful tool that led to a revolution in genetic engineering,” Zhao said. “But it still has some limitations.”

CRISPR is a bacterial molecule that detects invading viruses. It can carry one of several enzymes, such as Cas-9, that allow it to cut viral genomes at specific sites. TALEN also scans DNA to find and target specific genes. Both CRISPR and TALEN can be engineered to target specific genes to fight disease, improve crop plant characteristics or for other applications.

Zhao and his colleagues used single-molecule fluorescence microscopy to directly observe how the two genome-editing tools performed in living mammalian cells. Fluorescent-labeled tags enabled the researchers to measure how long it took CRISPR and TALEN to move along the DNA and to detect and cut target sites.

“We found that CRISPR works better in the less-tightly wound regions of the genome, but TALEN can access those genes in the heterochromatin region better than CRISPR,” Zhao said. “We also saw that TALEN can have higher editing efficiency than CRISPR. It can cut the DNA and then make changes more efficiently than CRISPR.”

TALEN was as much as five times more efficient than CRISPR in multiple experiments.

The findings will lead to improved approaches for targeting various parts of the genome, Zhao said.

“Either we can use TALEN for certain applications, or we could try to make CRISPR work better in the heterochromatin,” he said.

###

The National Institutes of Health and National Science Foundation support this work.

Zhao is a member of the Carl R. Woese Institute for Genomic Biology at the U. of I.

Editor’s notes:

To reach Huimin Zhao, email [email protected].

The paper “TALEN outperforms Cas9 in editing heterochromatin target sites” is available from the U. of I. News Bureau.

Media Contact
Diana Yates, Life Sciences Editor, U. of I. News Bureau
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-20672-5

Tags: BiotechnologyCell BiologyGene TherapyGeneticsMedicine/HealthPharmaceutical ChemistryPharmaceutical Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

October 10, 2025
Wirth Named Fellow of the American Physical Society

Wirth Named Fellow of the American Physical Society

October 10, 2025

UTA Physicist Secures $1.3 Million Grant to Advance Neutrino Research

October 10, 2025

Energy Savings at Home Are Driven by Attitudes, Not Income

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1219 shares
    Share 487 Tweet 304
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nursing Students: Self-Efficacy, Gender Bias, Mentor Assessment

BAMBOO: Pioneering Predictive Framework for Liquid Electrolytes

Urine Proteomics and Metabolomics: Revolutionizing TB Diagnosis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.