• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Highly efficient perovskite light-emitting diodes for next-generation display technology

Bioengineer by Bioengineer
January 25, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Perovskite LEDs with the world’s highest efficiency (EQE = 23.4%) — Seoul National University and University of Pennsylvania

IMAGE

Credit: seoul national university

Research team at Seoul National University (Prof. Tae-Woo Lee) and University of Pennsylvania (Prof. Andrew M. Rappe) developed perovskite light-emitting diodes (PeLEDs) with an external quantum efficiency (EQE) of 23.4%. The research results were published in Nature Photonics, which is the world-renowned international academic journal, on January 4th (Title: Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes).

Metal halide perovskites have very narrow spectral emission, excellent color purity, low material cost, and wide and easy color-tunability. Based on these advantages, perovskites are considered as a promising high color purity light emitter which can replace the conventional organic and inorganic quantum dot (QD) light emitters in displays and solid-state lighting technologies. Especially, perovskite is the only one emitter which can meet the standard of REC.2020. Therefore, perovskite is expected to contribute to the future ultra-high-definition television (UHD-TV) technology.

Since professor Tae-Woo Lee reported the PeLEDs with EQE of 8.53% which was comparable to that of phosphorescent organic light-emitting diode (LED) in Science in 2015, electroluminescence efficiencies of PeLEDs have been dramatically increased. After the Science paper, professor Tae-Woo Lee has lead the research fields of PeLEDs and recently achieved a EQE of 23.4% which was published in Nature Photonics. This EQE value is the highest efficiency in PeLEDs to date and even surpasses the highest EQE in InP-based green-emitting QD-LEDs (EQE = 13.6%). This improvement of EQE in PeLEDs is much faster than that in QD-LEDs which took 20 years to achieve EQE of 20% since it was first reported. These highlight the possibility of a commercialization of the perovskite emitters in industrial displays and solid-state lighting technologies.

Perovskites have severe problems to emit light at room temperature; small exciton binding energy induces direct dissociation of charge carriers and results in low luminescence efficiencies. To overcome this intrinsic problem, researchers have devoted to synthesizing colloidal perovskite nanocrystals which have a size of several nanometers (1 billionth of a meter). In such a small dimension, charge carriers can be spatially confined and can have high binding energy. However, due to the small size and concomitant high surface-to-volume ratio, perovskite nanocrystals have large surface defects. Furthermore, surface organic ligands are easily detached from the nanocrystal surfaces due to the dynamic binding nature, which induces many defects on the nanocrystal surfaces. Therefore, new strategy to effectively passivate the defects should be needed.

To solve these problems, Seoul National University research team led by Professor Tae-Woo Lee proposed a comprehensive strategy which introduces guanidinium organic cations into the conventional formamidinium-based perovskite nanocrystals. The introduced guanidinium cations controlled the defects both inside the nanocrystals and on the surfaces, and simultaneously confined the charge carriers more effectively inside the nanocrystals. As a result, perovskite nanocrystals achieve very high photoluminescence quantum efficiency (PLQE>90%) in both films and solutions. In addition, research team removed residual defects on nanocrystal surfaces by using a halide-based defect passivation agent, 1,3,5-tris(bromomethyl)-2,4,6-triethylbenzene (TBTB). With these comprehensive strategies, the research team demonstrated PeLEDs with the world’s highest EQE (23.4%) and current efficiency (108 cd A-1). This is the highest device efficiency in PeLEDs to date and even surpasses the highest efficiency in InP-based green emitting QD-LEDs (EQE = 13.6%).

A collaborative research team at University of Pennsylvania, led by Professor Andrew M Rappe, investigated a detailed defect suppression mechanism through the density functional theory (DFT) calculation. The collaborative research team investigated the mechanism that guanidinium can be incorporated into the nanocrystals in small concentrations (~10%), above which guanidinium migrates to the surface outermost layer of nanocrystals. Furthermore, the collaborative research team studied how this guanidinium doping passivates the defects both inside the nanocrystals and on the surfaces. In addition, collaborative research team investigated the principle that halide-based TBTB material passivates the residual defects on the surfaces.

Prof. Tae-Woo Lee said, “We have proposed a comprehensive strategies to passivate the defects and increase the radiative recombination in the perovskite nanocrystals for demonstrating extremely efficient PeLEDs”. “We expect that our work contributes to the commercialization of PeLEDs, as well as suggests a way to increase the luminescence efficiency of the PeLEDs.” said Tae-Woo.

###

This work was funded by the National Research Foundation of Korea (NRF) grant funded by the Korea government.

Media Contact
Tae-woo Lee
[email protected]

Tags: Chemistry/Physics/Materials SciencesMaterials
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.