• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Repurposed anti-malarial compounds kill diarrheal parasite, study finds

Bioengineer by Bioengineer
October 1, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Image courtesy of Sumiti Vinayak

CHAMPAIGN, Ill. — A class of compounds used for malaria treatment also kill the intestinal parasite Cryptosporidium, a leading cause of diarrheal disease and death in children that has no cure, a multi-institution collaboration of researchers found in a new study.

The compounds, called bicyclic azetidines, specifically target an enzyme responsible for protein production within the parasite, the authors report in the journal Science Translational Medicine.

“There’s an urgent need because young children are dying of this diarrheal pathogen, and there’s no effective medicine to treat the infection nor vaccine to prevent the disease,” said the study’s lead author, Sumiti Vinayak, a pathobiology professor at the University of Illinois Urbana-Champaign. “Immunocompromised patients and agricultural animals, especially young calves, are also very susceptible to Cryptosporidium. This is the first time we have had validation of a compound working on a specific target in this parasite.”

The researchers began by performing a broad analytical study of existing drugs, looking for any with the potential for repurposing as a Cryptosporidium treatment. After looking at many classes of anti-microbial compounds, they determined that the anti-malarial bicyclic azetidines was a candidate and tested them against Cryptosporidium.

After the compounds proved very effective at killing the parasite in cell cultures, the researchers tested them in immunocompromised mice with Cryptosporidium infections. They found that one oral dose a day for four days rid the mice of infection.

“This study provides a new way of targeting Cryptosporidium. Significantly, because we are repurposing compounds from an anti-malarial program in development, it allows us to apply insights from that program to the treatment of cryptosporidiosis,” said Eamon Comer, who led the study at the Broad Institute in Cambridge, Massachusetts. Professors Boris Striepen of the University of Pennsylvania and Christopher D. Huston of the University of Vermont also co-led the study.

The researchers then performed comprehensive biochemical and genetic studies to determine how the compounds attacked the parasite. They found that the bicyclic azetidines targeted an enzyme that makes transfer RNA, the molecule that carries amino acids when the cell makes proteins. The Cryptosporidium enzyme is very similar to that of the parasite that causes malaria, but different from the analogous enzyme in humans, Vinayak said, making it an effective drug target.

Using CRISPR-Cas9 gene-editing technology, the researchers changed one letter in the DNA of the Cryptosporidium gene for the target enzyme, making it just different enough that the drug would not attack it. That one change made the parasite resistant to the drugs, further confirming that blocking this enzyme is the mechanism by which the drug kills Cryptosporidium, Vinayak said.

“This is the first time that the mechanism of action of an anti-Cryptosporidium drug candidate has been confirmed,” Vinayak said. “It’s a good steppingstone to find these compounds that we can feed into the drug-development pipeline. Future research will further evaluate safety and clinical effectiveness, but the discovery of a new and potent series of compounds with a known target puts us on a promising path forward in this important effort to develop urgently needed treatments.”

###

The Bill and Melinda Gates Foundation and the National Institutes of Health supported this work.

Editor’s notes: To reach Sumiti Vinayak, call 217-300-6121; email [email protected].

The paper “Bicyclic azetidines kill the diarrheal pathogen Cryptosporidium in mice by inhibiting parasite phenylalanyl-tRNA synthetase” is available online.

DOI: 10.1126/scitranslmed.aba8412

Media Contact
Liz Ahlberg Touchstone
[email protected]

Original Source

https://news.illinois.edu/view/6367/1468157016

Related Journal Article

http://dx.doi.org/10.1126/scitranslmed.aba8412

Tags: BiologyChemistry/Physics/Materials SciencesGastroenterologyInfectious/Emerging DiseasesInternal MedicineMedicine/HealthParasitologyPharmaceutical SciencePharmaceutical/Combinatorial Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Proteomics Reveals Pathways in Early Coronary Disease

November 5, 2025

USC Study Reveals Key Genes Driving Aggressive Prostate Cancer in African Descent Populations

November 5, 2025

Prioritizing Pediatric Sleep: Science to Practice

November 5, 2025

Netrin-1 Levels as Markers in Diabetic Nephropathy

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

DDR1 Fuels Cervical Cancer and Immune Evasion

Proteomics Reveals Pathways in Early Coronary Disease

Leibniz-HKI Honored Again for Its Commitment to Equal Opportunity in Personnel Management

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.