• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Functional genetic variation in humans: comprehensive map published

Bioengineer by Bioengineer
September 19, 2013
in Bioengineering
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

European scientists, led by researchers from the University of Geneva’s Faculty of Medicine (UNIGE) in the GEUVADIS project, present a map that points to the genetic causes of differences between people. The study, published in Nature and Nature Biotechnology, offers the largest-ever dataset linking human genomes to gene activity at the level of RNA.

Understanding how each person’s unique genome makes them more or less susceptible to disease is one of the biggest challenges in science today. Geneticists study how different genetic profiles affect how certain genes are turned on or off in different people, which could be the cause of a number of genetic disorders.

Today’s study, conducted by over 50 scientists from nine European institutes, measured gene expression by sequencing RNA in human cells from 462 individuals, whose full genome sequences had already been published as part of the 1000 Genomes Project. This study adds a functional interpretation to the most important catalogue of human genomes.

‘The richness of genetic variation that affects the regulation of most of our genes surprised us,” says study coordinator Tuuli Lappalainen, previously at UNIGE and now at Stanford University. “It is important that we figure out the general laws of how the human genome works, rather than just delving into individual genes.” The biological discovery was enabled by a staggering amount of RNA data from multiple human populations.

A boost for personalised medicine

Knowing which genetic variants are responsible for differences in gene activity among individuals can give powerful clues for diagnosis, prognosis and intervention of different diseases. Senior author Emmanouil Dermitzakis, Louis Jeantet Professor at UNIGE, who led the study, emphasises that today’s study has profound implications for genomic medicine.

”Understanding the cellular effects of disease-predisposing variants helps us understand causal mechanisms of disease,” Dr. Dermitzakis points out. “This is essential for developing treatments in the future.”

A rich data resource for genetics

All the data of the study are freely available though the ArrayExpress functional genomics archive at EMBL-EBI, led by Alvis Brazma, who is part of the GEUVADIS analysis group. Open access to data and results allows independent researches to explore and re-analyse the data in different ways.

The GEUVADIS (Genetic European Variation in health and Disease) project, funded by the European Commission’s FP7 programme, is led by Professor Xavier Estivill of the Center of Genomic Regulation (CRG) in Barcelona. “We have created a valuable resource for the international human genomics community” says Dr. Estivill. “We want other scientists to use our data, too.”

Story Source:

The above story is based on materials provided by Unige, Emmanouil Dermitzakis and Tuuli Lappalainen.

 

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

February 4, 2023
blank

Robo-fish

September 19, 2016

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Sustainability Accelerator Chooses 41 Promising Projects Poised for Rapid Scale-Up

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Integrating Genetics, Modeling, and Climate Data: A Breakthrough Method for Predicting Rice Flowering

Hollings Researchers Demonstrate How Natural Language Processing Enhances Medical Practice

Developing Neonatal Point-of-Care Ultrasound Programs

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.