• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Avatar worms help to identify factors that modify genetic diseases

Bioengineer by Bioengineer
January 21, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IDIBELL researchers have used gene-editing technology in C. elegans to reproduce human mutations that cause retinitis pigmentaria. With this method, they have studied factors that affect disease development and possible drug treatments

IMAGE

Credit: J. Cerón


Often, patients from the same family and carriers of the same genetic mutation, develop a disease differently. This disparity may be due to the existence of mutations in other secondary genes, which influence the onset and progression of the disease caused by the main mutation. As an example, members of a family who are carriers of the same mutation may show symptoms of the disease at age 20, and others at age 50. Knowing what factors influence the onset and development of the disease would help a better prognosis and the application of preventive treatments. Retinitis pigmentaria is a group of a genetic and degenerative diseases characterized by the loss of light-receptor cells in the retina, this causes a non-responder retina and a progressive vision loss.

Two researchers from Dr. Cerón’s group, Dmytro Kukhtar and Karinna Rubio-Peña, from Bellvitge Biomedical Research Institute (IDIBELL), have worked on this topic in the last few years. To do it, and by CRISPR gene-editing technology, they introduced in C. elegans worms, mutations that cause retinitis pigmentaria in humans. Next, these mutations were classified into two groups: those that caused an obvious problem to worms (eg sterility or smaller size) and those that did not.

Worms that were not affected by human mutations were used to search for other genes whose inactivation caused alterations in the mutant worms, but not in the control worms. Thus, up to three genes were identified as candidates to be disease modifiers, and in cooperation with the main mutation could be affecting disease progression.

On the other hand, those avatar worms to which the human mutation caused them a defect were used to look for drugs that would alleviate the negative effect of the mutation. The result was surprising because researchers identified drugs that were harmful to worms harboring patient mutations, but these drugs did not affect control worms equally. In this way, this study changes the paradigm of drug screens since although it is important to find drugs that cure, it is also relevant for health to identify those drugs that could be harmful to patients with certain genetic mutations.

###

This research work has been funded mainly by the Carlos III Health Institute (ISCIII) and the ONCE Foundation.

Reference:

Mimicking of splicing-related retinitis pigmentosa mutations in C. elegans allow drug screens and identification of disease modifiers. Kukhtar D, Rubio-Peña K, Serrat X, Cerón J. Human Molecular Genetics. 2020 Jan 10. pii: ddz315.

Media Contact
Carla Serra
[email protected]

Original Source

http://www.idibell.cat/en/whats-on/noticies/avatar-worms-help-identify-factors-modify-genetic-diseases

Related Journal Article

http://dx.doi.org/10.1093/hmg/ddz315

Tags: BiologyBiotechnologyGenetics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

OfGATA9 Boosts Flower Size in Sweet Osmanthus

October 3, 2025
Exploring Phytobiotics in Fish and Shellfish

Exploring Phytobiotics in Fish and Shellfish

October 3, 2025

Conserved Small Sequences Revealed by Yeast Ribo-seq

October 3, 2025

Atlas Reveals Testicular Aging Across Species

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    92 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    86 shares
    Share 34 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Mitochondrial Dynamics in Cancer Drug Resistance

Rice Bran Extract: A Shield Against Neuroinflammation

Nationwide Survey Reveals Insights on Internal Medicine Mentorship

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.