• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Applying precious metal catalysts economically

Bioengineer by Bioengineer
May 15, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

This new method makes it possible to save material

IMAGE

Credit: RUB, Marquard

Researchers at Ruhr-Universität Bochum and the Fritz Haber Institute Berlin have developed a new method of using rare and expensive catalysts as sparingly as possible. They enclosed a precious metal salt in outer shells, tiny micelles, and had them strike against a carbon electrode, thus coating the surface with nanoparticles of the precious metal contained in the micelles. At the same time, the team was able to precisely analyse how much of the metal was deposited. The researchers then showed that the electrode coated in this manner could efficiently catalyse the oxygen reduction, which is the limiting chemical process in fuel cells.

The team led by Professor Kristina Tschulik and Mathies Evers from the Bochum Research Group for Electrochemistry and Nanoscale Materials describes the process in the journal Angewandte Chemie, published online in advance on 11 April 2019.

Producing particles of the same size

The research group produced the gold nanoparticles with the help of micelles. The particles initially consisted of a precursor substance, chloroauric acid, which was wrapped in an outer polymer shell. The benefit: “When we produce gold nanoparticles using micelles, the nanoparticles are all of an almost identical size,” says Kristina Tschulik, a Principal Investigator of the Cluster of Excellence Ruhr Explores Solvation (Resolv). Only a certain load of the precursor material, from which a single particle of a certain size is produced, fits inside the small micelles. “As particles of different sizes have different catalytic properties, it is important to control the particle size by means of the load quantity of the micelle,” adds Tschulik.

Uniform coating, even on complex surfaces

To coat the cylindrical electrode, the researchers immersed it in a solution containing the loaded micelles and applied a voltage to the electrode. The random motion of the micelles in the solution caused them to strike against the electrode surface over time. There, the outer shell burst open and the gold ions from the chloroauric acid reacted to form elemental gold, which adhered to the electrode surface as a uniform layer of nanoparticles. “Only flat substrates can be coated uniformly with nanoparticles using standard methods,” explains Tschulik. “Our process means that even complex surfaces can be loaded uniformly with a catalyst.”

Separated quantity precisely controllable

While the gold ions from the chloroauric acid react to form elemental gold, electrons flow. By measuring the resulting current, the chemists can determine exactly how much material was used to coat the electrode. At the same time, the method registers the impact of each individual particle and its size.

The researchers successfully tested the oxygen reduction reaction of the electrodes coated using the new process. They achieved an activity as high as that of naked gold nanoparticles without an outer shell. Due to the uniform coating of the surface, they also observed a reaction rate almost as high as that of electrodes completely covered with gold and solid gold electrodes at just eleven percent coverage.

###

Media Contact
Kristina Tschulik
[email protected]

Original Source

https://news.rub.de/english/press-releases/2019-05-15-chemistry-applying-precious-metal-catalysts-economically

Related Journal Article

http://dx.doi.org/10.1002/anie.201813993

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterialsNanotechnology/Micromachines
Share12Tweet7Share2ShareShareShare1

Related Posts

Innovative Immobilization Technique Enhances Surface Plasmon Resonance Analysis of Membrane Proteins

Innovative Immobilization Technique Enhances Surface Plasmon Resonance Analysis of Membrane Proteins

November 7, 2025
Radiative Coupled Evaporative Cooling Hydrogel Enables Above-Ambient Heat Dissipation and Enhanced Flame Retardancy

Radiative Coupled Evaporative Cooling Hydrogel Enables Above-Ambient Heat Dissipation and Enhanced Flame Retardancy

November 7, 2025

Electroactive Ferrocene Enables Shuttle-Free Aqueous Zinc–Iodine Cells

November 6, 2025

Exploring 3D Chaotic Microcavities with X-Ray Vision

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1301 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Myocarditis in Child After Scorpion Sting: Case Study

HIIT Boosts Mental Health and Sleep in College Women

Cumulative Blood Pressure Linked to Cognitive Decline in Seniors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.