• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

0.5°C of additional warming has a huge effect on global aridity

Bioengineer by Bioengineer
September 17, 2020
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Institute of Industrial Science, the University of Tokyo

Tokyo, Japan – In a new climate modeling study, researchers from the Institute of Industrial Science, The University of Tokyo have revealed major implications for global drought and aridity when limiting warming to 1.5°C rather than 2°C above pre-industrial levels. Drought has serious negative impacts on both human society and the natural world and is generally projected to increase under global climate change. As a result, assessment of the risk of drought under climate change is a critical area of climate research.

In the 2015 Paris Agreements, the United Nations Framework Convention on Climate Change (UNFCCC) proposed that the increase in global average temperature should be limited to between 1.5°C and 2°C above pre-industrial levels to limit the effects of severe climate change. However, there have been few studies focusing on the relative importance of this 0.5°C of global average temperature rise and what effect it might have on drought and aridity around the world.

“We wanted to contribute to the understanding of how important that 0.5°C could be, but it such a study is not easy to conduct based on previous modeling approaches,” explains corresponding author Hyungjun Kim. “This is mainly because most models look at the extreme high levels and you cannot simply take a slice out of the data while the model spins up to this maximum. Therefore, we used data from the specially designed Half a degree Additional warming Prognosis and Projected Impacts (HAPPI) project to assess the impacts on aridity based on estimations of the balance between water and energy at the Earth’s surface.”

The study revealed that 2°C of warming led to more frequent dry years and more severe aridification in most areas of the world compared with 1.5°C, which emphasizes that efforts should be made to limit warming to 1.5°C above pre-industrial levels.

“There is a really strong message that some parts of the world could have more frequent drought at 2°C than at 1.5°C. This situation could be especially severe in the Mediterranean, western Europe, northern South America, the Sahel region, and southern Africa,” says lead author Akira Takeshima. “However, this situation is highly regional. In some parts of the world, like Australia and some of Asia, the opposite situation was simulated, with a wetter climate at 2°C than at 1.5°C.”

These findings show the importance of considering the regional impacts of the additional 0.5°C of warming, especially with respect to any future relaxation of the 1.5°C target.

###

The article, “Global aridity changes due to differences in surface energy and water balance between 1.5ºC and 2ºC warming” was published in Environmental Research Letters at DOI: 10.1088/1748-9326/ab9db3

About Institute of Industrial Science (IIS), the University of Tokyo

Institute of Industrial Science (IIS), the University of Tokyo is one of the largest university-attached research institutes in Japan.

More than 120 research laboratories, each headed by a faculty member, comprise IIS, with more than 1,000 members including approximately 300 staff and 700 students actively engaged in education and research. Our activities cover almost all the areas of engineering disciplines. Since its foundation in 1949, IIS has worked to bridge the huge gaps that exist between academic disciplines and real-world applications.

Media Contact
Hyungjun Kim
[email protected]

Original Source

https://www.iis.u-tokyo.ac.jp/en/news/3353/

Related Journal Article

http://dx.doi.org/10.1088/1748-9326/ab9db3

Tags: Atmospheric ScienceClimate ChangeClimate ScienceEcology/EnvironmentEnergy SourcesGeographyHydrology/Water ResourcesMeteorologyTemperature-Dependent PhenomenaWeather/Storms
Share13Tweet8Share2ShareShareShare2

Related Posts

Unraveling Genomic Evolution in Marine Intertidal Limpets

Unraveling Genomic Evolution in Marine Intertidal Limpets

July 30, 2025
blank

Processing Environments Shape Food-Related Antibiotic Resistome

July 30, 2025

Multi-Proteomic Analysis Reveals Host Risks in VZV

July 30, 2025

Peptidoglycan Links Prevent Lysis in Gram-Negative Bacteria

July 29, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    58 shares
    Share 23 Tweet 15
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ripple Effects of Flood and COVID-19 on Production

Epigenomic Insights Transform Acute Myeloid Leukemia Outcomes

m6A RNA Modification Controls Microglial Phagocytosis in Alzheimer’s

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.