• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, March 4, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

World’s largest lakes reveal climate change trends

Bioengineer by Bioengineer
January 21, 2021
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Karl Bosse/MTRI

NASA-funded research on the 11 largest freshwater lakes in the world coupled field and satellite observations to provide a new understanding of how large bodies of water fix carbon, as well as how a changing climate and lakes interact.

Scientists at the Michigan Tech Research Institute (MTRI) studied the five Laurentian Great Lakes bordering the U.S. and Canada; the three African Great Lakes, Tanganyika, Victoria and Malawi; Lake Baikal in Russia; and Great Bear and Great Slave lakes in Canada.

These 11 lakes hold more than 50% of the surface freshwater that millions of people and countless other creatures rely on, underscoring the importance of understanding how they are being altered by climate change and other factors.

The two Canadian lakes and Lake Tanganyika saw the greatest changes in primary productivity — the growth of algae in a water body. Productivity fluctuations point to big changes in lake ecosystems.

“The base of the food chain in these lakes is algal productivity. These lakes are oceanic in size, and are teaming with phytoplankton — small algae,” said co-author Gary Fahnenstiel, a fellow at MTRI and recently retired senior research scientist for NOAA’s Great Lakes Environmental Research Laboratory. “We measured the carbon fixation rate, which is the rate at which the algae photosynthesize in these lakes. As that rate changes, whether increasing or decreasing, it means the whole lake is changing, which has ramifications all the way up the food chain, from the zooplankton to the fish.”

Many factors affect these lakes. Climate change, increasing nutrients (eutrophication) and invasive species all combine to wreak systemwide change — making it difficult to pinpoint specific causes, particularly from the ground with limited on-site observations.

Counting Phytoplankton with Color

But satellite imagery has made sorting through the noise easier and provides insights over time and space. Michael Sayers, MTRI research scientist and study lead author, uses ocean color remote sensing — making inferences about type and quantity of phytoplankton based on the color of the water — to track freshwater phytoplankton dynamics.

“We’ve relied on NASA assets — the MODIS satellite, which has been flying since 2002, to which we apply the algorithm and model we’ve been developing at MTRI for a decade,” Sayers said. “When we start to tally the numbers of pixels as observations globally for 11 lakes for 16 years, it is really quite remarkable.” The pixels observed per lake number “in the millions,” he added.

One of the most remarkable aspects of the results is just how fast changes in these freshwater lakes have occurred — a noticeable amount in fewer than 20 years. The research contributes to NASA’s Carbon Monitoring System’s goal of determining how much freshwater lakes contribute to the global carbon cycle.

“Three of the largest lakes in the world are showing major changes related to climate change, with a 20-25% change in overall biological productivity in just the past 16 years,” Fahnenstiel said.

More Than Algae

In the 16 years of data, Great Bear and Great Slave lakes in northern Canada saw the greatest increases in productivity, while Lake Tanganyika in southeastern Africa has seen decreases. The trends are linked to increases in water temperatures, as well as solar radiation and a reduction in wind speed.

Sayers said looking at productivity, algal abundance, water clarity, water temperature, solar radiation and wind speeds at freshwater lakes provides a richer picture of the overall ecosystem.

“Temperature and solar radiation are factors of climate change,” Sayers said. “Chlorophyll and water transparency changes are not necessarily caused by climate change, but could be caused by eutrophication or invasive species, like quagga mussels.”

The researchers used lake measurements performed by the Great Lakes Research Center research vessel fleet to ground truth the satellite observations and to provide input for model estimates.

The article “Carbon Fixation Trends in Eleven of the World’s Largest Lakes: 2003-2018” is published in the journal Water. The researchers plan to continue their research, applying what they’ve learned so far to the role harmful algal blooms have on carbon flux to the atmosphere.

As the saying goes, water is life. Gaining a better understanding of how lake productivity changes affect the bodies of water so many people rely on is important to the communities who live on the lakeshores. It’s also significant to the global community as we delve deeper into the role freshwater lakes play in the global carbon cycle and climate change.

Sidebar: How Do Lakes Fix Carbon?

Phytoplankton are microscopic algae that photosynthesize, or make energy from sunlight. Carbon fixation is a part of photosynthesis — inorganic carbon (particularly carbon dioxide) is converted into an organic compound by an organism. All living things on Earth contain organic carbon. The amount of phytoplankton and the rate at which they photosynthesize equal the carbon fixation rate in a lake.

###

Media Contact
Kelley Christensen
[email protected]

Original Source

https://www.mtu.edu/news/stories/2021/january/worlds-largest-lakes-reveal-climate-change-trends.html

Related Journal Article

http://dx.doi.org/10.3390/w12123500

Tags: BiologyClimate ChangeComputer ScienceElectrical Engineering/ElectronicsMarine/Freshwater BiologyMicrobiologySatellite Missions/Shuttles
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Gender assumptions harm progress on climate adaption and resilience

March 3, 2021
IMAGE

Researchers urge greater awareness of delayed skin reactions to Moderna COVID-19 vaccine

March 3, 2021

Mobile app helps young adults talk with friends about risky drug, alcohol use

March 3, 2021

MDI Biological Laboratory receives funding to address arsenic threat

March 3, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    663 shares
    Share 265 Tweet 166
  • People living with HIV face premature heart disease and barriers to care

    83 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Infectious/Emerging DiseasesTechnology/Engineering/Computer SciencePublic HealthMedicine/HealthBiologyMaterialsClimate ChangeCell BiologyGeneticscancerEcology/EnvironmentChemistry/Physics/Materials Sciences

Recent Posts

  • Gender assumptions harm progress on climate adaption and resilience
  • Researchers urge greater awareness of delayed skin reactions to Moderna COVID-19 vaccine
  • Mobile app helps young adults talk with friends about risky drug, alcohol use
  • MDI Biological Laboratory receives funding to address arsenic threat
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In