• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

What if mysterious ‘cotton candy’ planets actually sport rings?

Bioengineer by Bioengineer
March 2, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Some of the extremely low-density, ‘cotton candy like’ exoplanets called super-puffs may actually have rings

IMAGE

Credit: Illustration is by Robin Dienel and courtesy of the Carnegie Institution for Science.


Pasadena, CA–Some of the extremely low-density, “cotton candy like” exoplanets called super-puffs may actually have rings, according to new research published in The Astronomical Journal by Carnegie’s Anthony Piro and Caltech’s Shreyas Vissapragada

Super-puffs are notable for having exceptionally large radii for their masses–which would give them seemingly incredibly low densities. The adorably named bodies have been confounding scientists since they were first discovered, because they are unlike any planets in our Solar System and challenge our ideas of what distant planets can be like.

“We started thinking, what if these planets aren’t airy like cotton candy at all,” Piro said. “What if the super-puffs seem so large because they are actually surrounded by rings?”

In our own Solar System, all of the gas and ice giant planets have rings, with the most well-known example being the majestic rings of Saturn. But it has been difficult for astronomers to discover ringed planets orbiting distant stars.

The radii of exoplanets are measured during transits–when the exoplanet crosses in front of its host star causing a dip in the star’s light. The greater the size of the dip, the larger the exoplanet.

“We started to wonder, if you were to look back at us from a distant world, would you recognize Saturn as a ringed planet, or would it appear to be a puffy planet to an alien astronomer?” Vissapragada asked.

To test this hypothesis, Piro and Vissapragada simulated how a ringed exoplanet would look to an astronomer with high-precision instruments watching it transit in front of its host star. They also investigated the types of ring material that could account for observations of super-puffs.

Their work demonstrated that rings could explain some, but not all, of the super-puffs that NASA’s Kepler mission has discovered so far.

“These planets tend to orbit in close proximity to their host stars, meaning that the rings would have to be rocky, rather than icy,” Piro explained. “But rocky ring radii can only be so big, unless the rock is very porous, so not every super-puff would fit these constraints.”

According to Piro and Vissapragada, three super-puffs are especially good candidates for rings–Kepler 87c and 177c as well as HIP 41378f.

Follow-up observations to confirm their work won’t be possible until NASA’s James Webb Space Telescope launches next year, because existing land- and space-based telescopes lack the precision to confirm the presence of rings around these distant worlds.

If some of the super-puffs could be confirmed as ringed, this would improve astronomers’ understanding of how these planetary systems formed and evolved around their host stars.

###

This work was supported by the U.S. National Science Foundation and a Paul & Daisy Soros Fellowship for New Americans.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Media Contact
Anthony Piro
[email protected]
626-304-0297

Related Journal Article

http://dx.doi.org/10.3847/1538-3881/ab7192

Tags: AstronomyAstrophysicsComets/AsteroidsPlanets/MoonsSpace/Planetary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

October 10, 2025
Wirth Named Fellow of the American Physical Society

Wirth Named Fellow of the American Physical Society

October 10, 2025

UTA Physicist Secures $1.3 Million Grant to Advance Neutrino Research

October 10, 2025

Energy Savings at Home Are Driven by Attitudes, Not Income

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1220 shares
    Share 487 Tweet 305
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Uncovering Neurology’s Hidden Health Disparities

Atrial Fibrillation’s Role in Arrhythmia-Induced Cardiomyopathy

Enhancing Biopolymer Electrolytes with Graphene Oxide

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.