• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, January 22, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

We need to fine-tune our 'maps' of the visual cortex, study shows

Bioengineer by Bioengineer
January 30, 2019
in Health
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Monkey brain scans have revealed new information about the part of the brain that processes visual information. The findings were recently presented in PNAS by neurophysiologists Qi Zhu (KU Leuven) and Wim Vanduffel (KU Leuven/ Harvard Medical School).

When the brain receives visual signals from our eyes, it processes them in a strictly hierarchical way. Specific parts of the visual field are projected onto specific parts of the cortex through the retina. Points that are close together in the visual field are also processed by neighbouring neurons in the visual cortex. This strategy ensures a very accurate representation of the visual field in the cortex. This kind of representation is also repeated multiple times within the hierarchical visual system.

Mapping the visual cortex

First, our brain cells literally make maps of what we see, called ‘retinotopic maps’. These maps are slightly deformed, just like a world map is never a perfect representation of a globe. Our central vision, for example, is processed in much greater detail than our peripheral vision, a difference that the maps reflect. Regions at lower hierarchical levels feed information from the retinotopic maps to higher levels and vice versa, allowing us to finally know what we are seeing.

So, to understand vision, it’s extremely important to identify and precisely locate all these retinotopic maps within our visual cortex.

Similar to Old World monkeys?

Previously, our knowledge on the retinotopic maps was based on research with animals, such as primates, explains Professor Wim Vanduffel from KU Leuven and Harvard Medical School.

“Researchers observed profound differences between monkeys from the Old World – mostly from Africa and Asia – and the New World, the Americas. Moreover, textbooks state that our early visual cortex consists of adjacent parallel bands, just like in rhesus monkeys. Therefore, researchers believe that the human visual cortex is more similar to that of Old World monkeys.”

More detailed brain scans

However, novel technologies have allowed us to fine-tune this view, Vanduffel continues.

“In our study, we used an fMRI scanner (Functional Magnetic Resonance Imaging – ed.). With these scans, we can measure the activity in brain regions activated during specific tasks: for example, a monkey staring at a screen while only a small part of the visual field is stimulated. The technology has been around for a long time, but we considerably improved the spatial resolution, down to about 0.5 mm. This improvement allowed us to scan the entire visual cortex of individual monkeys in the greatest detail, which was impossible with older fMRI and electrophysiological methods.”

Better maps of the visual cortex

The study showed that the areas at the lowest levels of the visual cortex of Old World monkeys are not arranged in adjacent parallel bands.

Vanduffel: “Instead, these areas show a more complex topographic organisation. Surprisingly enough, however, this organisation is similar to the one previously observed in monkeys from the New World. In other words, just as geographic maps become more accurate over time, we have to adjust our knowledge on the topographic organisation of the visual cortex.”

“These improved maps will allow us to navigate the brain more precisely. It’s possible that the visual cortex of humans is organised similarly, but this requires further research with stronger and better MRI scanners.”

###

About KU Leuven

KU Leuven is Europe’s most innovative university. Located in Belgium, it is dedicated to research, education, and service to society. KU Leuven is a founding member of the League of European Research Universities (LERU) and has a strong European and international orientation. Our scientists conduct basic and applied research in a comprehensive range of disciplines. University Hospitals Leuven, our network of research hospitals, provides high-quality healthcare and develops new therapeutic and diagnostic insights with an emphasis on translational research. The university welcomes more than 50,000 students from over 140 countries. The KU Leuven Doctoral Schools train approximately 4,500 PhD students.
More information: http://www.kuleuven.be/english.

Media Contact
Wim Vanduffel
[email protected]

Related Journal Article

https://nieuws.kuleuven.be/en/content/2019/fine-tune-our-maps-of-the-visual-cortex
http://dx.doi.org/10.1073/pnas.1805561116

Tags: BiologyMedicine/HealthneurobiologyPhysiology
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Mitochondrial mutation increases the risk of diabetes in Japanese men

January 21, 2021
IMAGE

New study: nine out of ten US infants experience gut microbiome deficiency

January 21, 2021

A new study shows the relationship between surgery and Alzheimer’s disease

January 21, 2021

Personalizing cancer care with improved tumor models

January 21, 2021
Next Post

Measuring stress around cells

Researchers find antidepressants significantly raise risk of GI, intracranial bleeding

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    64 shares
    Share 26 Tweet 16
  • New drug form may help treat osteoporosis, calcium-related disorders

    40 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Medicine/HealthPublic HealthBiologyInfectious/Emerging DiseasesTechnology/Engineering/Computer SciencecancerMaterialsEcology/EnvironmentCell BiologyChemistry/Physics/Materials SciencesClimate ChangeGenetics

Recent Posts

  • Astronomers discover first cloudless, Jupiter-like planet
  • Advances in modeling and sensors can help farmers and insurers manage risk
  • Bringing atoms to a standstill: NIST miniaturizes laser cooling
  • Giant sand worm discovery proves truth is stranger than fiction
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In