• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Watered down biodiversity: sample type is critical in environmental DNA studies for biomonitoring

Bioengineer by Bioengineer
December 18, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo by Daryl Halliwell


DNA-based biomonitoring relies on species-specific segments of organisms DNA for their taxonomic identification and is rapidly advancing for monitoring invertebrate communities across a variety of ecosystems. The analytical approaches taken vary from single-species detection to bulk environmental sample analysis, depending largely on the focus of data generation. However, for freshwater systems, there is often a lack of consideration as to the optimal sample type for maximising detection of macroinvertebrates.

Ecology, life stage and habitat preference (i.e. benthic or water column) of macroinvertebrates ultimately influences the rate of DNA detection depending on the sampling approach taken. DNA-based biomonitoring data collected for freshwater macroinvertebrates often focuses on detection of bioindicator groups Ephemeroptera (mayflies), Plecoptera (stoneflies), Trichoptera (caddisflies) and Odonata (dragonflies & damselflies), to infer the health status of freshwater systems.

In their larval stage, these macroinvertebrates – commonly referred to as EPTO – occupy the benthos in rivers, lakes, ponds, and wetlands. Considering this, water samples have been proposed as a surrogate source of macroinvertebrate DNA, despite lack of understanding as to whether water provides sufficient taxonomic recovery of macroinvertebrates, particularly of EPTO groups.

To address this, a recent collaboration between the Hajibabaei Lab (Centre for Biodiversity Genomics, University of Guelph) and scientists at Environment and Climate Change Canada resulted in a paper in PLOS One investigating the recovery of macroinvertebrates, in particular EPTO, in shallow open-water wetlands by comparing matched water and bulk-tissue DNA samples.

Overall, they found that very few taxa were shared between bulk-benthos and water samples, with a much greater richness of macroinvertebrate taxa recovered from benthos. EPTO groups in particular were associated strongly with bulk-benthos samples, with limited EPTO families detected in all matched water samples.

“This pristine, wetland study system is excellent for comparing the relative detection of these taxa without the influence of water flow,” said lead author Prof. Mehrdad Hajibabaei. The study illustrates how sample choice is a critical factor for a comprehensive assessment of total macroinvertebrate biodiversity. “This research is vitally important for informing large-scale projects such as STREAM, where a high volume of benthic macroinvertebrate data is now being generated using a standardised DNA-based methodology.”

“Species detectability is an important consideration when designing biomonitoring programs,” said Dr. Donald Baird, co-author and Research Scientist with Environment and Climate Change Canada’s Water Science and Technology Directorate. “Our study shows clearly that to access macroinvertebrates DNA water samples are no substitute for bulk organism collection, as the majority of critical indicator taxa are simply not detected when we know they are present.”

Eliminating false negatives and positives is crucial for creating high quality baseline data for determining the health status of Canadian watersheds. “There is a need for consistency of biomonitoring data when assessing total biodiversity, and bulk-benthos samples provide sufficient taxonomic coverage that is both cost-effective and efficient,” said Dr. Chloe Robinson, co-author and project manager for STREAM.

This study emphasises the critical nature of choosing representative sampling methods to maximise DNA capture from target organisms whilst avoiding diluting the diversity, to enable informed decisions regarding freshwater health.

###

Media Contact
Mehrdad Hajibabaei
[email protected]
519-824-4120 x52487

Original Source

https://ibol.org/news/watered-down-biodiversity/

Related Journal Article

http://dx.doi.org/10.1371/journal.pone.0225409

Tags: BiologyClimate ChangeEcology/EnvironmentEntomologyHydrology/Water ResourcesMarine/Freshwater BiologyMolecular BiologyPollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Discovery Reveals Early Hominin Species Coexisted in Ethiopia

August 13, 2025
Genetic Breakthrough: The Unique DNA Factor That Distinguishes Humans

Genetic Breakthrough: The Unique DNA Factor That Distinguishes Humans

August 13, 2025

Mizzou Researchers Uncover New Insights into Immune Response to Influenza

August 13, 2025

‘Essentiality’ Scan Uncovers Microbe’s Vital Survival Toolkit

August 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Synaptic Loss and Connectivity Drops in Depressed PD Mice

Arginine-Infused Dentifrices Demonstrate Significant Reduction in Childhood Dental Caries

Nationwide Study Shows PSMA PET/CT Before Salvage Radiotherapy Enhances Overall Survival in Prostate Cancer Patients

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.