• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Valleytronics core theory for future high-efficiency semiconductor technology

Bioengineer by Bioengineer
July 24, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

DGIST discovered the core theory of valleytronics that will lead high-efficiency next generation semiconductor technology

IMAGE

Credit: DGIST

DGIST research team discovered a theory that can expand the development of valleytronics technology, which has been drawing attention as a next generation semiconductor technology. This is expected to advance the development of valleytronics technology one level further, a new magnetic technology of next generation that surpasses the existing data processing speed.

DGIST announced on Monday, June 17 that Professor JaeDong Lee research’s team at the DGIST Department of Emerging Materials Science discovered the formation of valley domain , which will contribute to the performance of next generation semiconductor, development of anomalous current, and its control mechanism. This research has significant meaning as it discovered and applied the correlations between valley domain1, current, and two different physical quantities.

A valley is a vertex or an edge of band energy and is also called valley spin. valleytronics is the storage and use of information using the number of quanta which determines valleys. It is applicable to future electronic devices and quantum computing technology since its quantum information storage surpasses the existing charge or spin control technology. Many researchers are conducting research on valley control since valleytronics has infinite potential that encompasses spintronics and nanoelectronics in the next generation semiconductor engineering field. However, the actual applicability is not too high due to the difficulties in securing the stability and enough quantity of valleys.

Through this research, Professor JaeDong Lee’s team solved the stability issue of valley spin by discovering the formation of valley domain in molybdenum disulfide, a next generation 2D monolayer semiconductor material. A valley domain is defined as domain of electrons with the same valley momentum inside a matter. The team identified that a valley domain formed in an extreme nano structure can be used to store information in replacement of spin. Moreover, the research team discovered that they can generate anomalous transverse current by controlling the size of valley domain. Anomalous transverse current occurs inevitably due to the movement of a domain wall2 and flows toward only one direction along to the movement of valley domain. They also proposed and showed the applicability of diode mechanism, a single crystal nanostructure substance that is unlike the existing semiconductor diode3 of heterostructure.

Professor JaeDong Lee at Department of Emerging Materials Science said “Through this research, we have discovered the core theory of valleytronics which can use the two different phenomena of valley magnetic and electric signal control in a single 2D crystalline material at the same time. We hope that valleytronics research becomes applicable in more various fields to accelerate the advancement of low-power, highspeed information storage platform.”

###

This research result was participated by Youngjae Kim, a student in the Masters-Ph.D. Integrated Program in the Department of Emerging Materials Science, as the first author and was published on the online version of Nano Letters, a top-level, well-renowned international journal in nanoscience and technology on May 22.

1 Valley Domain: A domain where electrons have the same valley momentum inside a material. Can be applied as a 2D information storage device by control.

2 Domain wall: A very thin transitional zone that separates different valley, magnetic, and optical characteristics inside material. Very promising for the next generation electron technology because it is very small and can move around.

3 Diode : A semiconductor device that makes current flow toward only one direction from external voltage.

Media Contact
Jae Dong Lee
[email protected]

Original Source

https://www.dgist.ac.kr/en/html/sub06/060202.html?mode=V&no=85d46093aa379b4ad7f8d512dc7d973d

Related Journal Article

http://dx.doi.org/10.1021/acs.nanolett.9b01676

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsElectromagneticsMaterialsResearch/DevelopmentSuperconductors/SemiconductorsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Neighboring Groups Speed Up Polymer Self-Deconstruction

Neighboring Groups Speed Up Polymer Self-Deconstruction

November 28, 2025
blank

Activating Alcohols as Sulfonium Salts for Photocatalysis

November 26, 2025

Carbonate Ions Drive Water Ordering in CO₂ Reduction

November 25, 2025

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    105 shares
    Share 42 Tweet 26
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Blocking TBK1/IKKε Boosts Tumor Immune Killing

Exploring Gut Virome in Nonalcoholic Fatty Liver Disease

Radiomics Model Predicts Live Birth from Blastocyst Transfer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.