• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

UVA develops new tools to battle cancer, advance genomics research

Bioengineer by Bioengineer
May 26, 2021
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Courtesy Zang lab at UVA

University of Virginia School of Medicine scientists have developed important new resources that will aid the battle against cancer and advance cutting-edge genomics research.

UVA’s Chongzhi Zang, PhD, and his colleagues and students have developed a new computational method to map the folding patterns of our chromosomes in three dimensions from experimental data. This is important because the configuration of genetic material inside our chromosomes actually affects how our genes work. In cancer, that configuration can go wrong, so scientists want to understand the genome architecture of both healthy cells and cancerous ones. This will help them develop better ways to treat and prevent cancer, in addition to advancing many other areas of medical research.

Using their new approaches, Zang and his colleagues and students have already unearthed a treasure trove of useful data, and they are making their techniques and findings available to their fellow scientists. To advance cancer research, they’ve even built an interactive website that brings together their findings with vast amounts of data from other resources. They say their new website, bartcancer.org, can provide “unique insights” for cancer researchers.

“The folding pattern of the genome is highly dynamic; it changes frequently and differs from cell to cell. Our new method aims to link this dynamic pattern to the control of gene activities,” said Zang, a computational biologist with UVA’s Center for Public Health Genomics and UVA Cancer Center. “A better understanding of this link can help unravel the genetic cause of cancer and other diseases and can guide future drug development for precision medicine.”

Bet on BART

Zang’s new approach to mapping the folding of our genome is called BART3D. Essentially, it compares available three-dimensional configuration data about one region of a chromosome with many of its neighbors. It can then extrapolate from this comparison to fill in blanks in the blueprints of genetic material using “Binding Analysis for Regulation of Transcription”, or BART, a novel algorithm they recently developed. The result is a map that offers unprecedented insights into how our genes interact with the “transcriptional regulators” that control their activity. Identifying these regulators helps scientists understand what turns particular genes on and off – information they can use in the battle against cancer and other diseases.

The researchers have built a web server, BARTweb, to offer the BART tool to their fellow scientists. It’s available, for free, at http://bartweb.org. The source code is available at https://github.com/zanglab/bart2. Test runs demonstrated that the server outperformed several existing tools for identifying the transcriptional regulators that control particular sets of genes, the researchers report.

The UVA team also built the BART Cancer database to advance research into 15 different types of cancer, including breast, lung, colorectal and prostate cancer. Scientists can search the interactive database to see which regulators are more active and which are less active in each cancer.

“While a cancer researcher can browse our database to screen potential drug targets, any biomedical scientist can use our web server to analyze their own genetic data,” Zang said. “We hope that the tools and resources we develop can benefit the whole biomedical research community by accelerating scientific discoveries and future therapeutic development.”

###

Findings Published

The researchers have published their findings in a trio of new scientific papers: They describe BART3D in the scientific journal Bioinformatics in an article by Zhenjia Wang, Yifan Zhang and Chongzhi Zang; they describe BARTweb in NAR Genomics and Bioinformatics in an article by Wenjing Ma, Zhenjia Wang, Yifan Zhang, Neal E. Magee, Yayi Feng, Ruoyao Shi, Yang Chen and Chongzhi Zang; and they describe BART Cancer in NAR Cancer in a paper by Zachary V. Thomas, Zhenjia Wang and Chongzhi Zang.

Chongzhi Zang is a member of the School of Medicine’s Department of Public Health Sciences and Department of Biochemistry and Molecular Genetics. He is also part of UVA’s Department of Biomedical Engineering, a collaboration of the School of Medicine and the School of Engineering.

The work was supported by the National Institutes of Health, grants R35GM133712 and K22CA204439; a Phi Beta Psi Sorority Research Grant; and a Seed Award from the Jayne Koskinas Ted Giovanis Foundation for Health and Policy.

To keep up with the latest medical research news from UVA, subscribe to the Making of Medicine blog at http://makingofmedicine.virginia.edu.

Media Contact
Josh Barney
[email protected]

Original Source

https://newsroom.uvahealth.com/2021/05/24/uva-develops-new-tools-to-battle-cancer-advance-genomics-research/

Related Journal Article

http://dx.doi.org/10.1093/narcan/zcab011

Tags: BiologyBreast CancercancerGenesGeneticsHealth Care Systems/ServicesHealth ProfessionalsMedicine/HealthProstate Cancer
Share13Tweet8Share2ShareShareShare2

Related Posts

Accelerated Evolution Could Enable Bacteria to Establish Themselves in the Gut Microbiome, UCLA Researchers Reveal

October 9, 2025

Brain & Behavior Research Foundation Honors Five Top Psychiatric Researchers with 2025 Outstanding Achievement Prizes

October 9, 2025

Urological Models Verified with Human Penile Tissue Tests

October 9, 2025

Emergency Nurses’ Presenteeism: A Qualitative Insight

October 9, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1175 shares
    Share 469 Tweet 293
  • New Study Reveals the Science Behind Exercise and Weight Loss

    101 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Core Diversification with 1,2-Oxaborines: Versatile Platform

Exploring the Dose-Dependent Impact of Dissolved Biochar on C. elegans: Uncovering Physiological and Transcriptomic Changes

New Study Uncovers Genetic Connection to the Most Common Pediatric Bone Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.