• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

UTA testing method to build temperature, heat-flux sensors for hypersonic vehicles

Bioengineer by Bioengineer
September 27, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Reliable sensors for hypersonic flight

IMAGE

Credit: UT Arlington

Harsh environmental conditions–such as surface temperatures reaching thousands of degrees Fahrenheit–make it challenging to accurately measure temperatures and heat flux on hypersonic flight systems.

But a mechanical engineering associate professor at The University of Texas at Arlington believes a new additive manufacturing technology can withstand those conditions and may be used to provide reliable measurements.

With help from a Small Business Innovation Research grant from the Department of Defense, Panos Shiakolas is exploring ceramic and other non-metallic materials to fabricate novel advanced temperature and heat flux sensors.

Shiakolas is working with Luca Maddalena, a professor of aerospace engineering at UTA and an expert in hypersonic aerothermodynamics. Maddalena is also director of UTA’s Aerodynamics Research Center and recently brought online a new arc-jet heated hypersonic wind tunnel that is the only one of its kind at a university in the United States.

Heat flux and temperature sensors are used extensively in testing and evaluating hypersonic applications in high-temperature environments. Their performance must be uniform, accurate and consistent, but traditional manufacturing requires lots of human skill and dexterity. The hope is that this new additive manufacturing concept will overcome these limitations.

“We have been working to develop sensors, analyze the manufacturing process and identify the type of non-metallic materials that need to be used, as well as the capabilities and limitations of the platform,” Shiakolas said. “We’re now at the stage where we can manufacture some of the features needed for the sensors, so we’re taking the constraints from the process and incorporating them into the analysis so whatever the data tells us, we are confident that the performance of the fabricated sensor will be close to the predicted performance.”

The work being done by Shiakolas and Maddalena is an example of data-driven discovery, one of the themes of UTA’s Strategic Plan 2020.

“Hypersonic research, such as the research being performed in our new wind tunnel, presents many challenges because of the extremely high temperatures involved in testing designs,” said Erian Armanios, chair of UTA’s Mechanical and Aerospace Department. “Being able to reliably design and manufacture sensors for use in this environment is very important to advancements in design, so this research is key to future successes in the field.”

###

Media Contact
Herb Booth
[email protected]

Original Source

https://www.uta.edu/news/news-releases/2019/09/25/hypersonic-flight

Tags: Climate ChangeIndustrial Engineering/ChemistryMaterialsMechanical EngineeringResearch/DevelopmentSuperconductors/SemiconductorsTechnology/Engineering/Computer ScienceTemperature-Dependent PhenomenaUrbanizationVehicles
Share13Tweet8Share2ShareShareShare2

Related Posts

Bacterial Enzyme Powers ATP-Driven Protein C-Terminus Modification

Bacterial Enzyme Powers ATP-Driven Protein C-Terminus Modification

August 9, 2025
Machine-Learned Model Maps Protein Landscapes Efficiently

Machine-Learned Model Maps Protein Landscapes Efficiently

August 9, 2025

High-Definition Simulations Reveal New Class of Protein Misfolding

August 8, 2025

Organic Molecule with Dual Functions Promises Breakthroughs in Display Technology and Medical Imaging

August 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    137 shares
    Share 55 Tweet 34
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    77 shares
    Share 31 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    55 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cholesterol Balance Drives Recovery After Revascularization

Circulating Hsp70 Signals Early Thoracic Cancer Spread

Evolving Plasmodium falciparum Drug Resistance in Uganda

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.