• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, January 14, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Using strain to control oxynitride properties

Bioengineer by Bioengineer
November 23, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A chance discovery leads to a simple process that can introduce ‘oxygen-missing layers’ into perovskite oxynitrides, changing their properties.

IMAGE

Credit: Mindy Takamiya/Kyoto University iCeMS

Japanese scientists have stumbled onto a simple method for controlling the introduction of defects, called ‘vacancy layers’, into perovskite oxynitrides, leading to changes in their physical properties. The approach, published in the journal Nature Communications, could help in the development of photocatalysts.

Oxynitrides are inorganic compounds formed of oxygen, nitrogen and other chemical elements. They have gained much attention in recent years because of their interesting properties, with applications in optical and memory devices, and in photocatalytic reactions, for example.

In 2015, solid state chemist Hiroshi Kageyama of Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS) and his team reported that they found a way to fabricate oxynitrides using a lower temperature ammonia treatment process than the conventional method that requires more than 1,000°C). The new process produced a polycrystalline powder with layers of missing oxygen atoms, known as oxygen-vacancy planes.

The team wanted to examine the physical properties of this oxynitride, so they grew it as a single crystal thin film on a substrate. “But the oxygen-vacancy layers in the resulting film were in a different plane than the original powder,” Kageyama says. They wondered if the underlying substrate influenced the orientation of the oxygen vacancy layers.

The team grew a film of strontium vanadium oxide (SrVO3) on different substrates and treated it in ammonia at a low temperature of 600°C. The plane of the oxygen vacancy layers and their periodicity–how frequently they appear within the film’s other layers–changed depending on the degree of mismatch between the ‘lattice strains’ in the substrate and the overlying film. Lattice strain is a force applied by the substrate that causes the atoms in a material to be slightly displaced relative to their normal position.

“Even though solid state chemists have known that oxygen-defect planes play an important role in changing the properties of oxides, such as inducing superconductivity, we haven’t been able to control their formation before,” Kageyama says.

Oxides are typically synthesized using high temperature reactions, making it difficult to control their crystal structures. Using a lower temperature and strain in this experiment was key for success.

“Our team developed a method to create and control the direction and periodicity of the oxygen-vacancy layers in thin film oxides simply by applying strain,” Kageyama says. “Since the strain energy is enormously large, as large as thousands of degrees Celsius, we’re able to use it to stabilize novel structures that don’t otherwise form.”

Kageyama says it would be interesting to investigate how changes to the thickness of the oxide film, or the reaction temperature and time, could also affect the orientation and periodicity of the oxygen-vacancy layers.

###

DOI: 10.1038/s41467-020-19217-7

About Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS):

At iCeMS, our mission is to explore the secrets of life by creating compounds to control cells, and further down the road to create life-inspired materials.

https://www.icems.kyoto-u.ac.jp/

For more information, contact:

I. Mindy Takamiya/Mari Toyama

[email protected]

Media Contact
Mindy Takamiya
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-19217-7

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)Materials
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026
blank

Cobalt-Catalyzed Thioester Coupling via Siloxycarbene

January 12, 2026

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026

Biocompatible Ligand Enables Safe In-Cell Protein Arylation

January 8, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    73 shares
    Share 29 Tweet 18
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    52 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Reducing Apneic Time in Critically Ill Children

Genetic Insights into Circadian Adaptation in Endangered Fish

Brain Lesions Impact Postural Control in Spastic CP

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.