• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, January 15, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Using strain to control oxynitride properties

Bioengineer by Bioengineer
November 23, 2020
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A chance discovery leads to a simple process that can introduce ‘oxygen-missing layers’ into perovskite oxynitrides, changing their properties.

IMAGE

Credit: Mindy Takamiya/Kyoto University iCeMS

Japanese scientists have stumbled onto a simple method for controlling the introduction of defects, called ‘vacancy layers’, into perovskite oxynitrides, leading to changes in their physical properties. The approach, published in the journal Nature Communications, could help in the development of photocatalysts.

Oxynitrides are inorganic compounds formed of oxygen, nitrogen and other chemical elements. They have gained much attention in recent years because of their interesting properties, with applications in optical and memory devices, and in photocatalytic reactions, for example.

In 2015, solid state chemist Hiroshi Kageyama of Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS) and his team reported that they found a way to fabricate oxynitrides using a lower temperature ammonia treatment process than the conventional method that requires more than 1,000°C). The new process produced a polycrystalline powder with layers of missing oxygen atoms, known as oxygen-vacancy planes.

The team wanted to examine the physical properties of this oxynitride, so they grew it as a single crystal thin film on a substrate. “But the oxygen-vacancy layers in the resulting film were in a different plane than the original powder,” Kageyama says. They wondered if the underlying substrate influenced the orientation of the oxygen vacancy layers.

The team grew a film of strontium vanadium oxide (SrVO3) on different substrates and treated it in ammonia at a low temperature of 600°C. The plane of the oxygen vacancy layers and their periodicity–how frequently they appear within the film’s other layers–changed depending on the degree of mismatch between the ‘lattice strains’ in the substrate and the overlying film. Lattice strain is a force applied by the substrate that causes the atoms in a material to be slightly displaced relative to their normal position.

“Even though solid state chemists have known that oxygen-defect planes play an important role in changing the properties of oxides, such as inducing superconductivity, we haven’t been able to control their formation before,” Kageyama says.

Oxides are typically synthesized using high temperature reactions, making it difficult to control their crystal structures. Using a lower temperature and strain in this experiment was key for success.

“Our team developed a method to create and control the direction and periodicity of the oxygen-vacancy layers in thin film oxides simply by applying strain,” Kageyama says. “Since the strain energy is enormously large, as large as thousands of degrees Celsius, we’re able to use it to stabilize novel structures that don’t otherwise form.”

Kageyama says it would be interesting to investigate how changes to the thickness of the oxide film, or the reaction temperature and time, could also affect the orientation and periodicity of the oxygen-vacancy layers.

###

DOI: 10.1038/s41467-020-19217-7

About Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS):

At iCeMS, our mission is to explore the secrets of life by creating compounds to control cells, and further down the road to create life-inspired materials.

https://www.icems.kyoto-u.ac.jp/

For more information, contact:

I. Mindy Takamiya/Mari Toyama

[email protected]

Media Contact
Mindy Takamiya
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-19217-7

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)Materials
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Howard University professor to receive first Joseph A. Johnson Award

January 15, 2021
IMAGE

Nanodiamonds feel the heat

January 15, 2021

Controlling chemical catalysts with sculpted light

January 15, 2021

Researchers trace geologic origins of Gulf of Mexico ‘super basin’ success

January 15, 2021
Next Post
IMAGE

Understanding ion channel inhibition to open doors in drug discovery

IMAGE

Eye exam could lead to early Parkinson's disease diagnosis

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    38 shares
    Share 15 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

cancerGeneticsClimate ChangeChemistry/Physics/Materials SciencesPublic HealthTechnology/Engineering/Computer ScienceBiologyMaterialsInfectious/Emerging DiseasesCell BiologyEcology/EnvironmentMedicine/Health

Recent Posts

  • Howard University professor to receive first Joseph A. Johnson Award
  • Nanodiamonds feel the heat
  • Special interests can be assets for youth with autism
  • Controlling chemical catalysts with sculpted light
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In