• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Using a soft crystal to visualize how absorbed carbon dioxide behaves in liquid

Bioengineer by Bioengineer
November 25, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Shin-ichiro Noro

A team of scientists has succeeded in visualizing how carbon dioxide (CO2) behaves in an ionic liquid that selectively absorbs CO2. The finding is expected to help develop more efficient methods to capture CO2 in the atmosphere, one of the major factors causing global warming.

Carbon dioxide (CO2) levels in the atmosphere — a major factor in global warming — continue to rise every year, creating grave concerns about the future of Earth. To halt global warming, our industrial society needs to emit much less CO2. One way of achieving this is to separate and collect CO2 before it is released into the atmosphere. While some such efforts are already underway, they have not been very efficient. There is thus an urgent need to develop technology that can separate and collect CO2 more efficiently, both to protect the environment but also to promote recycling of CO2 as a resource.

The use of ion liquids to effectively absorb CO2 has been the subject of intensive research. Yet more investigation of how CO2 absorbed in ionic liquids behaves is needed to improve the materials used in the CO2 separation and collection process. As ionic liquids are a fluid with no regular structure, it has been difficult to directly observe the state of CO2 absorbed in them.

In the present study, a team of scientists that included Professors Shin-ichiro Noro and Takayoshi Nakamura, both of Hokkaido University’s Graduate School of Environmental Science, focused on a soft crystal, a substance that possesses both the softness of a liquid and the regularity of a crystal. They synthesized a soft crystal containing components of an ionic liquid that absorbed CO2. As anticipated, the soft crystal maintained its regularity even after it absorbed CO2, making it possible to conduct X-ray diffraction analysis.

The analysis showed the absorbed CO2 interacts with both fluorine and oxygen atoms of the bis(trifluoromethylsulfonyl)imide anion, a component of the ionic liquid. Furthermore, the scientists’ theoretical analysis showed that dispersion and electrostatic interactions exist between CO2 and the framework, creating the force that binds CO2 to the anion.

The team’s findings are expected to be helpful in designing and developing ionic liquids capable of efficiently separating and collecting CO2, and will likely accelerate practical applications of such liquids, a pivotal step to alleviating the negative effects of global warming.

Shin-ichiro Noro focuses on the development of porous materials to contribute to environmental restoration and conservation, while Takayoshi Nakamura’s work is focused on the development of molecular devices for a wide variety of applications.

###

Media Contact
Sohail Keegan Pinto
[email protected]

Original Source

https://www.global.hokudai.ac.jp/blog/using-a-soft-crystal-to-visualize-how-absorbed-carbon-dioxide-behaves-in-liquid/

Related Journal Article

http://dx.doi.org/10.1038/s42004-020-00390-1

Tags: Chemistry/Physics/Materials SciencesClimate ChangeMaterialsMolecular PhysicsPollution/Remediation
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Alkaloid Chemistry: First Asymmetric Syntheses of Seven Quebracho Indole Alkaloids Achieved in Just 7-10 Steps Using “Antenna Ligands”

October 31, 2025
blank

Dual-Function Electrocatalysis: A Comprehensive Overview

October 31, 2025

Cologne Researchers Unveil New Element in the “Nuclear Periodic Table”

October 31, 2025

Molecular-Level Breakthrough in Electrochromism Unveiled

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Adolescent Health Literacy: Insights from Nurses

CoMn2O4-rGO Nanocomposite Enhances Supercapacitor Performance

Perpendicular-Anisotropy Spin Ice Enables Tunable Reservoir Computing

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.