• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Uranium in mine dust could dissolve in human lungs

Bioengineer by Bioengineer
December 5, 2018
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Eshani Hettiarachchi


New Mexico contains hundreds of historic uranium mines. Although active uranium mining in the state has ceased, rates of cardiovascular and metabolic disease remain high in the population residing close to mines within the Navajo Nation. According to a new study in ACS’ journal Environmental Science & Technology Letters, inhaled uranium in dusts from the mines could be a factor.

Uranium ore is weakly radioactive, which could damage DNA and cause disease. However, the chemical toxicity of uranium may be a greater risk than its radioactivity. In laboratory studies, uranium that was depleted of its most radioactive isotope still caused DNA damage and cell death. Small particles of uranium-containing dust could be inhaled by people and penetrate deep within their lungs. But scientists haven’t studied whether uranium can leach from minerals in the dust into lung fluids and the bloodstream. So Gayan Rubasinghege and colleagues wanted to determine if uranium in dust samples from a mining region in New Mexico could dissolve in simulated lung fluids.

To find out, the researchers collected airborne dust samples from five sites near uranium mines close to communities. They identified minerals in the dust samples, which varied by location. All of the dust samples contained one or more uranium-containing minerals, such as uraninite or carnotite. Then, the researchers exposed two simulated lung fluids — one that mimics the fluid that surrounds lung cells, and another that simulates the acidic environment in lung immune cells that engulf dust particles — to the dust and measured the amounts of uranium dissolved in each fluid. The mineral composition of the dust influenced its solubility, with some minerals dissolving more readily in one fluid than the other. These results indicate that toxicological assessments of mining lands should focus on specific sites, instead of making broad generalizations, the researchers say.

###

The authors acknowledge funding from the National Institute of General Medical Sciences and the National Science Foundation.

The paper’s abstract will be available on December 5 at 8 a.m. Eastern time here: http://pubs.acs.org/doi/abs/10.1021/acs.estlett.8b00557

The American Chemical Society, the world’s largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us: Twitter | Facebook

Media Contact
Katie Cottingham
[email protected]
301-775-8455

Tags: Atmospheric ChemistryChemistry/Physics/Materials SciencesOlfactory/TastePollution/RemediationPublic HealthPulmonary/Respiratory MedicineToxicology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Reevaluating Xylotini: Codon Bias and Phylogenetic Insights

November 1, 2025
Exploring Symbiotic Diversity in Moroccan Bradyrhizobium

Exploring Symbiotic Diversity in Moroccan Bradyrhizobium

October 31, 2025

Unexpected Breakthrough: Student’s Research Uncovers Crucial New Insights into HPV

October 31, 2025

Sheathed Flagellum Structures Explain Vibrio cholerae Motility

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1294 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhanced Asymmetric Supercapacitors via MWCNT-MnFe2O4/MoS2 Composite

Patient Insights: MyChart’s Role in IUD Placement

Reevaluating Xylotini: Codon Bias and Phylogenetic Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.