• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

University of Luxembourg cooperates with ArianeGroup on rocket engine technology

Bioengineer by Bioengineer
March 19, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Arianespace

The University of Luxembourg and the European rocket manufacturer ArianeGroup have signed a collaboration agreement to advance research in the area of rocket propulsion. The two-year project aims to achieve a cost reduction of rocket launches. The research is funded by ArianeGroup and the Luxembourg National Research Fund (FNR).

Cryogenic propellants such as liquid oxygen and liquid hydrogen are widely used in space propulsion systems because they are more efficient and less toxic than other propellants. These fuels need to be stored at extremely low temperatures in order to maintain their liquid state. The rocket engine, its valves and feeding lines must however be able to operate properly when in direct contact with the extremely cold fuels. In order to ensure proper engine function, multiple engine components have to be cooled down to the temperature of the cryogenic fluids before the launch.

A complex process of heat transfer, the so-called chill-down, is initiated prior to the launch to ensure that propellants and the technical system operates at the same temperature. Before ignition, propellants are introduced into the main feed valve of the rocket engine. After the valve has completely cooled down, it can be safely opened and the propellants are supplied to the engine for ignition.

The complex process is challenging for space engineers and aerospace companies, because it is difficult to precisely determine the time required for the chill-down of the engine and its components. “There are currently no accurate models to predict this cryogenic heat transfer process. This forces us to conduct long components tests and use engineering estimations with high margins of safety. This results in expensive tests and long development times. Additionally, this implies increased use of propellants or substitute cryogenics during flight preparation, which increases launch costs,” says Dr. Sebastian Soller from ArianeGroup.

The University of Luxembourg and ArianeGroup have joined forces in a public-private-partnership to investigate, experimentally and by means of computational simulation, the heat transfer process between the cryogen propellant and the valve. “Our team is composed of experts in thermal analysis and Computational Fluid Dynamics. We will first study the process in depth to obtain data for the valve cooling. Then, we will develop reliable and accurate models to estimate the heat transfer process leading to the chill-down used on the Ariane 6 rocket engines,” explains Prof. Stephan Leyer, Head of the Research Unit in Engineering Sciences (RUES). Prof. Stephan Leyer initiated the project together with Post-Doctoral researcher Dr. Edder Jose Rabadan Santana.

The objective of the project is to integrate the obtained heat transfer models into ArianeGroup’s engineering workflow to optimise the design of cryogenic valves and reduce testing costs and development times.

This new collaboration is in line with an increasing number of space-related activities at the University of Luxembourg, such as the upcoming Interdisciplinary Space Master (ISM) starting in September 2019. “With this new project, the University of Luxembourg demonstrates its high-level expertise in space technology by working with the European leader in access to space and also contributes to the recognition of Luxembourg as a space leader,” comments Stéphane Pallage, Rector of the University of Luxembourg.

###

Media Contact
Thomas Klein
[email protected]

Tags: Energy/Fuel (non-petroleum)Experiments in SpaceIndustrial Engineering/ChemistryMaterialsMechanical EngineeringSatellite Missions/ShuttlesSpace/Planetary Science
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough Unveiled: New Mechanism Enhances Plasma Confinement Performance

October 22, 2025
blank

Biochar and Moist Soils: A Breakthrough Solution to Reduce Farm Emissions Without Sacrificing Crop Yields

October 22, 2025

Palladium-Catalyzed Coupling of Propargyl Alcohol Esters with Diverse Nucleophiles Enables Synthesis of Polysubstituted Functionalized Conjugated Dienes

October 22, 2025

Vietnam’s Wise Choice Advances Scientific Progress

October 22, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1272 shares
    Share 508 Tweet 318
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    304 shares
    Share 122 Tweet 76
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    141 shares
    Share 56 Tweet 35
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    131 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

APOE4 Drives Nigral Tau Phosphorylation via Cholesterol

The Link Between Professional Soccer and Osteoarthritis: Why So Many Players Are Affected

Efficient DTW: Analyzing Dynamic Psychiatric Processes

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.