• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, January 26, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

University at Buffalo researchers report quantum-limit-approaching chemical sensing chip

Bioengineer by Bioengineer
January 11, 2021
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Study shows improvements to chemical sensing chip that aims to quickly and accurately identify drugs and other trace chemicals

IMAGE

Credit: Huaxiu Chen, University at Buffalo.

BUFFALO, N.Y. — University at Buffalo researchers are reporting an advancement of a chemical sensing chip that could lead to handheld devices that detect trace chemicals — everything from illicit drugs to pollution — as quickly as a breathalyzer identifies alcohol.

The chip, which also may have uses in food safety monitoring, anti-counterfeiting and other fields where trace chemicals are analyzed, is described in a study that appears on the cover of the Dec. 17 edition of the journal Advanced Optical Materials.

“There is a great need for portable and cost-effective chemical sensors in many areas, especially drug abuse,” says the study’s lead author Qiaoqiang Gan, PhD, professor of electrical engineering in the UB School of Engineering and Applied Sciences.

The work builds upon previous research Gan’s lab led that involved creating a chip that traps light at the edges of gold and silver nanoparticles.

When biological or chemical molecules land on the chip’s surface, some of the captured light interacts with the molecules and is “scattered” into light of new energies. This effect occurs in recognizable patterns that act as fingerprints of chemical or biological molecules, revealing information about what compounds are present.

Because all chemicals have unique light-scattering signatures, the technology could eventually be integrated into a handheld device for detecting drugs in blood, breath, urine and other biological samples. It could also be incorporated into other devices to identify chemicals in the air or from water, as well as other surfaces.

The sensing method is called surface-enhanced Raman spectroscopy (SERS).

While effective, the chip the Gan group previously created wasn’t uniform in its design. Because the gold and silver was spaced unevenly, it could make scattered molecules difficult to identify, especially if they appeared on different locations of the chip.

Gan and a team of researchers — featuring members of his lab at UB, and researchers from the University of Shanghai for Science and Technology in China, and King Abdullah University of Science and Technology in Saudi Arabia — have been working to remedy this shortcoming.

The team used four molecules (BZT, 4-MBA, BPT, and TPT), each with different lengths, in the fabrication process to control the size of the gaps in between the gold and silver nanoparticles. The updated fabrication process is based upon two techniques, atomic layer deposition and self-assembled monolayers, as opposed to the more common and expensive method for SERS chips, electron-beam lithography.

The result is a SERS chip with unprecedented uniformity that is relatively inexpensive to produce. More importantly, it approaches quantum-limit sensing capabilities, says Gan, which was a challenge for conventional SERS chips

“We think the chip will have many uses in addition to handheld drug detection devices,” says the first author of this work, Nan Zhang, PhD, a postdoctoral researcher in Gan’s lab. “For example, it could be used to assess air and water pollution or the safety of food. It could be useful in the security and defense sectors, and it has tremendous potential in health care.”

###

The work was supported by the U.S. National Science Foundation.

Media Contact
Cory Nealon
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/adom.202001634

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyChemical/Biological WeaponsElectrical Engineering/ElectronicsNanotechnology/MicromachinesTechnology/Engineering/Computer Science
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Highly specific synaptic plasticity in addiction

January 26, 2021
IMAGE

Breakthrough design at UBCO vastly improves mechanical heart valve

January 26, 2021

How did Florida fail to respond to a coral disease epizootic and what’s to follow?

January 26, 2021

Impact of patient-reported symptom information on lumbar spine MRI Interpretation

January 25, 2021
Next Post
IMAGE

Ocean acidification is transforming California mussel shells

IMAGE

Small towns are bigger than we think

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    68 shares
    Share 27 Tweet 17
  • New drug form may help treat osteoporosis, calcium-related disorders

    41 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

BiologyTechnology/Engineering/Computer ScienceInfectious/Emerging DiseasesMedicine/HealthCell BiologyChemistry/Physics/Materials SciencesGeneticscancerClimate ChangeMaterialsPublic HealthEcology/Environment

Recent Posts

  • Highly specific synaptic plasticity in addiction
  • Breakthrough design at UBCO vastly improves mechanical heart valve
  • How did Florida fail to respond to a coral disease epizootic and what’s to follow?
  • Impact of patient-reported symptom information on lumbar spine MRI Interpretation
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In