• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, February 13, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Unexpected Magnetoresistance Discovered in Antiferromagnetic Kagome Semimetal

Bioengineer by Bioengineer
February 13, 2026
in Chemistry
Reading Time: 4 mins read
0
Unexpected Magnetoresistance Discovered in Antiferromagnetic Kagome Semimetal
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In a groundbreaking advancement in the field of condensed matter physics, scientists have uncovered an extraordinary phenomenon within antiferromagnetic kagome semimetal heterostructures that challenges established understandings of magnetoresistance behavior. The multidisciplinary team from the High Magnetic Field Laboratory (CHMFL) under the Hefei Institutes of Physical Science, Chinese Academy of Sciences, alongside collaborators from the State Key Laboratory of Semiconductor Physics and Chip Technologies at the Institute of Semiconductors, CAS, have reported the observation of anomalous oscillatory magnetoresistance. This discovery not only sheds light on intricate magnetic interactions in novel materials but also opens new horizons for the design of next-generation topological spintronic devices.

At the core of this research lies the unique class of materials known as antiferromagnetic kagome semimetals. These materials exhibit a highly frustrated lattice geometry named after the traditional Japanese kagome basket-weaving pattern, resulting in a web of interlinked triangles. This topology induces complex interactions among electron spins, fostering an environment where geometric frustration and strong spin correlations interface with the electronic band topology. Such interplay in the kagome lattice has driven considerable interest, as it allows the stabilization of exotic quantum phases and excitations, making these materials prime candidates for future antiferromagnetic spintronics applications.

The research team synthesized heterostructures combining FeSn, an antiferromagnetic kagome semimetal, with a Pt (platinum) layer. This interface engineering is pivotal because it intentionally breaks inversion symmetry, which plays a fundamental role in allowing Dzyaloshinskii–Moriya interactions (DMI) to emerge. DMI is an antisymmetric exchange interaction known to stabilize chiral spin textures such as skyrmions and spin spirals, features that are otherwise prohibited in centrosymmetric environments. By precisely controlling the thickness of the FeSn layer and the resulting interface characteristics, the researchers demonstrated the ability to tune the strength of the DMI, thereby manipulating the spin configurations within the FeSn itself.

Magnetotransport measurements revealed an unconventional magnetoresistance response that deviates starkly from the well-understood Shubnikov–de Haas oscillations commonly associated with Landau quantization in high magnetic fields. In these FeSn/Pt heterostructures, the team observed damped oscillatory magnetoresistance within low magnetic fields, indicating a fundamentally different underlying mechanism. This magnetoresistance behavior presents as oscillations in electrical resistance when subjected to varying magnetic fields but cannot be accounted for by known classical or quantum oscillatory transport phenomena.

To elucidate the microscopic origins of these anomalous transport properties, the researchers employed magnetic force microscopy (MFM) under extreme conditions—a home-built system capable of operating at low temperatures and subjected to intense magnetic fields via the Steady High Magnetic Field Facility (SHMFF). Through direct real-space visualization, the MFM imaging unveiled a variety of topological spin textures at the FeSn/Pt interface. These topological magnetic structures—essentially localized, stable configurations of spin arrangements distinguished by their nontrivial spatial topology—offer compelling evidence that the anomalous magnetoresistance stems from magnetoelectric coupling induced by these spin textures.

The identification of these previously elusive antiferromagnetic topological spin textures represents a monumental milestone, as such textures are notoriously difficult to detect and manipulate compared to their ferromagnetic counterparts. Their presence signifies that topological protection and intricately intertwined spin states are achievable in antiferromagnetic materials, amplifying their potential utility in spintronic devices where low-energy dissipation and high-frequency operation are paramount.

Beyond merely documenting the discovery, this study provides vital insights into the complex interplay between geometric frustration, spin interactions, and band topology in the emergence of topological spin structures. The ability to control these textures through interfacial engineering and DMI tuning introduces a versatile platform for designing future devices that exploit robust topological states. This could revolutionize applications ranging from ultra-dense memory storage to quantum computation elements, where information encoding via spin configurations offers enhanced speed and efficiency.

Moreover, the observed magnetoresistance oscillations linked with topological spin states present a new diagnostic avenue for investigating the dynamic nature of antiferromagnetic spin textures. Conventional techniques often fall short in discerning such subtle magnetic phenomena, making the combination of precision heterostructure fabrication and advanced microscopy instrumental to advancing the field.

This investigation also underscores the significance of low-field magnetic regimes, which are more practical for technological applications compared to extreme magnetic conditions often required for observing quantum effects. Harnessing low-field topological magnetoresistance responses could pave the way for implementing these phenomena in commercial devices without necessitating high operational power or specialized infrastructure.

The successful integration of FeSn and Pt layers encourages exploration into other heterostructure combinations and material interfaces to broaden the spectrum of tunable topological magnetic phases. As the understanding of such systems deepens, it may lead to the discovery of novel quantum behaviors and unprecedented functionalities within antiferromagnetic spintronics.

In summary, the discovery of anomalous magnetoresistance oscillations tied unequivocally to topological magnetic textures in antiferromagnetic kagome semimetal heterostructures represents a transformative advancement bridging fundamental physics with applied material science. By revealing how interface-induced Dzyaloshinskii–Moriya interactions engineer complex spin textures manifesting in unique transport signatures, this work fundamentally enriches the toolbox for quantum materials research and spintronic innovation.

As the field moves forward, the implications of this breakthrough could ripple across multiple domains, including information technology, sensing, and quantum devices, heralding a new era where antiferromagnetic topological spintronic devices become not just theoretical constructs but tangible technological realities.

Subject of Research: Anomalous magnetoresistance and topological spin textures in antiferromagnetic kagome semimetal heterostructures

Article Title: Anomalous Magnetoresistance in an Antiferromagnetic Kagome Semimetal Heterostructures

News Publication Date: 29-Nov-2025

Web References:
https://doi.org/10.1002/adfm.202519240

Image Credits: FENG Qiyuan

Keywords

Physical sciences

Tags: advanced condensed matter physicsanomalous oscillatory magnetoresistanceantiferromagnetic kagome semimetalscomplex magnetic interactionselectronic band topologygeometric frustration in materialsHigh Magnetic Field Laboratory researchinterdisciplinary scientific collaborationKagome lattice structurematerials for spintronicsnovel quantum phasestopological spintronic devices

Share12Tweet7Share2ShareShareShare1

Related Posts

New Technique Boosts 3D Object Image Quality by Five Times

New Technique Boosts 3D Object Image Quality by Five Times

February 13, 2026
HKU Astrophysicists Help Decipher Potential First-Ever Einstein Probe Detection of a Black Hole Devouring a White Dwarf

HKU Astrophysicists Help Decipher Potential First-Ever Einstein Probe Detection of a Black Hole Devouring a White Dwarf

February 13, 2026

Innovative Metal–Organic Framework Enables Real-Time Fluoride Removal and Detection in Water

February 13, 2026

Electric Power Revolutionizes Carbon Fiber Shaping

February 13, 2026

POPULAR NEWS

  • Imagine a Social Media Feed That Challenges Your Views Instead of Reinforcing Them

    Imagine a Social Media Feed That Challenges Your Views Instead of Reinforcing Them

    872 shares
    Share 347 Tweet 217
  • Digital Privacy: Health Data Control in Incarceration

    64 shares
    Share 26 Tweet 16
  • New Record Great White Shark Discovery in Spain Prompts 160-Year Scientific Review

    57 shares
    Share 23 Tweet 14
  • Epigenetic Changes Play a Crucial Role in Accelerating the Spread of Pancreatic Cancer

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Relationship Confidence Enhances Individual Well-Being, Study Finds

Tracking Individuals Affected by Natural Disasters

Engineered Exosome Nanovesicles Deliver Antibodies for IBD

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 74 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.