• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, January 22, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

UMD biologist awarded $ 1.5 million to develop brain mapping techniques

Bioengineer by Bioengineer
October 6, 2020
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

NIH’s High-Risk, High-Reward Research Program will fund a project that could transform efforts to understand how neurons are wired.

IMAGE

Credit: Courtesy Colenso Speer

The National Institutes of Health (NIH) awarded its Director’s New Innovator Award to University of Maryland Biology Assistant Professor Colenso Speer. The award, which is one of the organization’s most competitive grants, is part of NIH’s High-Risk, High-Reward Research Program. It is designed to support “exceptionally creative early career investigators who propose innovative, high-impact projects in the biomedical, behavioral or social sciences.”

Speer will receive $1.5 million for a five-year investigation into the development and plasticity of neural circuitry in the brain. He plans to create tools and methods for studying how neural circuits form and how connections between neurons change at the molecular level in response to sensory experiences.

Speer’s research could lead to a major step forward in mapping the physical layout of the circuits in the brain and understanding the complex chemical signals that pass between neurons.

“I was very pleased to receive this award and to know that our ideas are being welcomed and thought of as innovative,” Speer said. “This award acknowledges that success is not guaranteed, but that potential for a successful outcome is very high and that it would be transformative for the field.”

A key focus of Speer’s research is the molecular activity within synapses, the physical connections between neurons in the brain. Each of the roughly one hundred trillion synapses in the human brain is an extremely intricate and complex environment where multiple molecules process and convey signals across the connection. Those connections change over time, growing stronger or weaker through experience, a process that contributes to learning and memory. So far, scientists have not had the tools to investigate exactly how synapses function at the molecular level.

“We’re sort of going down the rabbit hole in our research to try to understand how synapses are wiring up and properly connecting together as they’re being formed,” Speer said. “We’re asking, ‘What are the molecular mechanisms that regulate synapse formation and organization?'”

To conduct this research, Speer and his team will study how specific neurons and synapses develop to connect the eyes to the brain and enable visual perception in mice. Working with collaborators from UMD’s Department of Biology, Department of Chemistry and Biochemistry and Department of Cell Biology and Molecular Genetics, Speer will develop and apply a series of new technologies from three broad areas of research: transcriptomics, proteomics and super-resolution fluorescence microscopy. Transcriptomics, which analyzes RNA, will be used to determine how DNA in cells of the neuronal circuitry is transcribed to produce new proteins that perform the cells’ biological functions. Proteomics will be used to identify changes in the types and amounts of proteins at work in synapses during different stages of development and in response to different stimuli. Super-resolution fluorescence microscopy will enable researchers in Speer’s lab to image the physical arrangement of molecules within brain tissue and map the spatial organization of RNA and proteins contributing to the development of synaptic connections.

“The techniques that we plan to apply here are extremely sophisticated,” Speer explained. “We’re working with very small and delicate samples of RNA and protein that are either unstable, easily degraded or lost during the process, so each step is very technically challenging.”

In addition, the team will apply these methods to very tiny targets–single synapses from specific, individual neurons. With such a high level of difficulty, a lot of things could go wrong during sampling or analysis. But, if successful, Speer’s research could result in the first complete list of ingredients–at the level of RNA and protein–in a developing synapse. It could also provide the tools to create a full understanding of the spatial organization of the molecules that underly synapse function and the organization of circuits. This work would allow for a detailed molecular picture of how the brain is wired and how it changes in response to different sensory inputs.

“The reward is that we could have a comprehensive molecular map of synapses during development, aging and disease,” Speer said. “If we had that information, this would help us identify genetic candidates for potential treatments for neuropsychiatric disorders, neurodevelopmental disorders, aging and memory disorders, and many other cognitive functions that are directly impacted by changes in synapses.”

###

Speer came to the University of Maryland in 2017, after completing a postdoctoral fellowship at Harvard. He earned a Ph.D. in Neuroscience at UC Davis in 2010 and a B.S. in Molecular Biosciences/Biotechnology at Arizona State University in 2004.

Collaborators from the University of Maryland include Joshua Singer, a professor and chair of the Department of Biology, Peter Nemes, an associate professor of chemistry and biochemistry and Najib El-Sayed a professor of cell biology and molecular genetics who also holds a joint appointment in the University of Maryland Institute for Advanced Computer Studies.

Initial collaboration between Speer, Nemes and El-Sayed was supported by a 2019 UMD Brain and Behavior Initiative (BBI) Seed Grant.

Speer’s NIH New Innovator Award has been granted under the award number DP2MH125812.

Media Relations Contact: Kimbra Cutlip, 301-405-9463, [email protected]

University of Maryland

College of Computer, Mathematical, and Natural Sciences

2300 Symons Hall

College Park, Md. 20742

http://www.cmns.umd.edu

@UMDscience

Media Contact
Kimbra Cutlip
[email protected]

Original Source

https://cmns.umd.edu/news-events/features/4682

Tags: BiologyMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Giant sand worm discovery proves truth is stranger than fiction

January 21, 2021
IMAGE

The downward trend: Nature’s decline risks our quality of life

January 21, 2021

Scientists make pivotal discovery on mechanism of Epstein-Barr virus latent infection

January 21, 2021

A closer look at T cells reveals big differences in mild vs. severe COVID-19 cases

January 21, 2021
Next Post
IMAGE

Hunting for the lowest known nuclear-excited state

IMAGE

The plant hormone auxin may promote disease by regulating virulence gene expression

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    64 shares
    Share 26 Tweet 16
  • New drug form may help treat osteoporosis, calcium-related disorders

    40 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Climate ChangeEcology/EnvironmentMaterialsChemistry/Physics/Materials SciencesCell BiologyTechnology/Engineering/Computer ScienceBiologycancerGeneticsMedicine/HealthPublic HealthInfectious/Emerging Diseases

Recent Posts

  • New combination of immunotherapies shows great promise for treating lung cancer
  • Astronomers discover first cloudless, Jupiter-like planet
  • Advances in modeling and sensors can help farmers and insurers manage risk
  • Bringing atoms to a standstill: NIST miniaturizes laser cooling
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In