• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, April 11, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

UM Bio Station researchers unlock mystery of subterranean stoneflies

Bioengineer by Bioengineer
July 1, 2020
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: UM photo

FLATHEAD LAKE – In a new study published in the scientific journal Ecology, researchers from the University of Montana’s Flathead Lake Biological Station may have unlocked a mystery surrounding unique aquatic insects in the Flathead watershed.

“There’s a surprising adaptation of stoneflies in alluvial aquifers that allows them to use low-oxygen or oxygen-free environments,” said FLBS researcher Rachel Malison, lead author on the study. “These aquifers are hotspots of biodiversity, and this study highlights the vital role gravel-bed river floodplains play on the landscape.”

River floodplains are among the most biodiverse landscapes on earth. They provide an important habitat for aquatic and terrestrial organisms, and their aquifers (i.e., shallow groundwater beneath and adjacent to the river) are key components of complex ecosystems worldwide. The Nyack floodplain of the Middle Fork Flathead River outside Glacier National Park, for instance, sustains everything from microbes to grizzly bears and is home to over half of the 100-plus species of stoneflies known in the state of Montana.

But there’s a unique mystery at work within these river floodplains. Out of sight and under the surface, alluvial aquifers are composed of unconsolidated materials and offer limited sources of carbon for sustaining organisms and food webs. Alluvial aquifers also can contain extreme environmental conditions and an abundance of methane gas, which is typically produced in freshwater ecosystems within anoxic (zero-oxygen) or hypoxic (significantly low-oxygen) environments.

To this point, most stoneflies are thought to require highly oxygenated water environments to survive. But in the alluvial aquifer of the Nyack floodplain, large populations of subterranean stoneflies exist that can be found in low-oxygen environments, and significant portions of their biomass carbon derive from methane.

The question of how these stoneflies could survive and possibly access food in such an inhospitable, low-oxygen environment, is a question that Malison and her team of researchers set out to address.

“It was in the early-1990s that [FLBS researcher] Bonnie Ellis first discovered that a species of stonefly in the Nyack floodplain had the ability to survive anoxia exposure, and it’s been a mystery ever since,” Malison said. “No other stoneflies have this adaptation, so we wanted to investigate to better understand how large populations of stoneflies might be supported in aquifer food webs.”

Through the course of their study, Malison and her fellow researchers tested the anoxic and hypoxic responses of nearly 2,500 stonefly individuals in three alluvial aquifer species and nine river species. Compared to their surface-dwelling relatives, the aquifer stoneflies performed better in low-oxygen and oxygen-free conditions, surviving an average of three times longer than their above-ground counterparts.

Additionally, the aquifer stoneflies were still able to keep moving and crawling when exposed to 76 hours without oxygen, which has important implications for how these species may be able to access different food resources in the aquifer.

Delving into the DNA of the stoneflies, the researchers showed that the aquifer stoneflies have gene sequences for hemocyanin, an oxygen-transport respiratory protein, which could represent a possible mechanism for the stoneflies’ ability to survive at low-oxygen levels.

The results of the study show that subterranean stoneflies likely are able to exploit rich carbon resources in anoxic zones, which may explain their extraordinarily high abundance in gravel-bed floodplain aquifers. Additionally, their remarkable ability to perform well in low-oxygen and oxygen-free conditions is unique within the entire order of stoneflies.

It’s a discovery that suggests unconventional and surprising methane sources likely support a crucial component of biodiversity and productivity in floodplains all over the world.

“These findings begin to help us understand how vulnerable different stoneflies might be to climate change,” Malison said. “As waters warm they contain less oxygen, potentially causing stress and negatively influencing populations of the more sensitive species.”

###

This study was made possible thanks to funding from the National Science Foundation. In addition to Malison, other researchers on the study included current FLBS researchers Amanda DelVecchia, Brian Hand and Gordon Luikart; FLBS researchers emerita Jack Stanford and Bonnie Ellis; UM researcher Arthur Woods; and Ehime University (Japan) researchers Maribet Gamboa and Kozo Watanabe, as well as past FLBS intern Hailey Jacobson.

The complete study is found in the science journal Ecology at https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecy.3127.

Media Contact
Rachel Malison
[email protected]

Original Source

https://bit.ly/3ijcqjS

Related Journal Article

http://dx.doi.org/10.1002/ecy.3127

Tags: BiodiversityBiologyClimate ChangeEcology/EnvironmentMarine/Freshwater Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Computer model fosters potential improvements to ‘bionic eye’ technology

April 9, 2021
IMAGE

Abrupt ice age climate changes behaved like cascading dominoes

April 9, 2021

Earth’s crust mineralogy drives hotspots for intraterrestrial life

April 9, 2021

Study investigates link between lactation and visceral, pericardial fat

April 9, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    851 shares
    Share 340 Tweet 213
  • Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    59 shares
    Share 24 Tweet 15
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    56 shares
    Share 22 Tweet 14
  • A sturdier spike protein explains the faster spread of coronavirus variants

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Cell BiologyGeneticsMedicine/HealthClimate ChangeInfectious/Emerging DiseasesTechnology/Engineering/Computer SciencePublic HealthMaterialscancerEcology/EnvironmentChemistry/Physics/Materials SciencesBiology

Recent Posts

  • MD Anderson researchers highlight advances in clinical studies at the AACR Annual Meeting 2021
  • Men with low health literacy less likely to choose active surveillance for prostate cancer after tumor profiling
  • Level of chromosomal abnormality in lung cancer may predict immunotherapy response
  • Mutant KRAS and p53 cooperate to drive pancreatic cancer metastasis
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In